1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#![unstable(feature = "raw_vec_internals", reason = "implementation detail", issue = "0")]
#![doc(hidden)]

use core::cmp;
use core::mem;
use core::ops::Drop;
use core::ptr::{self, NonNull, Unique};
use core::slice;

use crate::alloc::{Alloc, Layout, Global, handle_alloc_error};
use crate::collections::CollectionAllocErr::{self, *};
use crate::boxed::Box;

/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
/// In particular:
///
/// * Produces Unique::empty() on zero-sized types
/// * Produces Unique::empty() on zero-length allocations
/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics)
/// * Guards against 32-bit systems allocating more than isize::MAX bytes
/// * Guards against overflowing your length
/// * Aborts on OOM or calls handle_alloc_error as applicable
/// * Avoids freeing Unique::empty()
/// * Contains a ptr::Unique and thus endows the user with all related benefits
///
/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
/// free its memory, but it *won't* try to Drop its contents. It is up to the user of RawVec
/// to handle the actual things *stored* inside of a RawVec.
///
/// Note that a RawVec always forces its capacity to be usize::MAX for zero-sized types.
/// This enables you to use capacity growing logic catch the overflows in your length
/// that might occur with zero-sized types.
///
/// However this means that you need to be careful when round-tripping this type
/// with a `Box<[T]>`: `cap()` won't yield the len. However `with_capacity`,
/// `shrink_to_fit`, and `from_box` will actually set RawVec's private capacity
/// field. This allows zero-sized types to not be special-cased by consumers of
/// this type.
#[allow(missing_debug_implementations)]
pub struct RawVec<T, A: Alloc = Global> {
    ptr: Unique<T>,
    cap: usize,
    a: A,
}

impl<T, A: Alloc> RawVec<T, A> {
    /// Like `new` but parameterized over the choice of allocator for
    /// the returned RawVec.
    pub const fn new_in(a: A) -> Self {
        // !0 is usize::MAX. This branch should be stripped at compile time.
        // FIXME(mark-i-m): use this line when `if`s are allowed in `const`
        //let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };

        // Unique::empty() doubles as "unallocated" and "zero-sized allocation"
        RawVec {
            ptr: Unique::empty(),
            // FIXME(mark-i-m): use `cap` when ifs are allowed in const
            cap: [0, !0][(mem::size_of::<T>() == 0) as usize],
            a,
        }
    }

    /// Like `with_capacity` but parameterized over the choice of
    /// allocator for the returned RawVec.
    #[inline]
    pub fn with_capacity_in(cap: usize, a: A) -> Self {
        RawVec::allocate_in(cap, false, a)
    }

    /// Like `with_capacity_zeroed` but parameterized over the choice
    /// of allocator for the returned RawVec.
    #[inline]
    pub fn with_capacity_zeroed_in(cap: usize, a: A) -> Self {
        RawVec::allocate_in(cap, true, a)
    }

    fn allocate_in(cap: usize, zeroed: bool, mut a: A) -> Self {
        unsafe {
            let elem_size = mem::size_of::<T>();

            let alloc_size = cap.checked_mul(elem_size).unwrap_or_else(|| capacity_overflow());
            alloc_guard(alloc_size).unwrap_or_else(|_| capacity_overflow());

            // handles ZSTs and `cap = 0` alike
            let ptr = if alloc_size == 0 {
                NonNull::<T>::dangling()
            } else {
                let align = mem::align_of::<T>();
                let layout = Layout::from_size_align(alloc_size, align).unwrap();
                let result = if zeroed {
                    a.alloc_zeroed(layout)
                } else {
                    a.alloc(layout)
                };
                match result {
                    Ok(ptr) => ptr.cast(),
                    Err(_) => handle_alloc_error(layout),
                }
            };

            RawVec {
                ptr: ptr.into(),
                cap,
                a,
            }
        }
    }
}

impl<T> RawVec<T, Global> {
    /// Creates the biggest possible RawVec (on the system heap)
    /// without allocating. If T has positive size, then this makes a
    /// RawVec with capacity 0. If T has 0 size, then it makes a
    /// RawVec with capacity `usize::MAX`. Useful for implementing
    /// delayed allocation.
    pub const fn new() -> Self {
        Self::new_in(Global)
    }

    /// Creates a RawVec (on the system heap) with exactly the
    /// capacity and alignment requirements for a `[T; cap]`. This is
    /// equivalent to calling RawVec::new when `cap` is 0 or T is
    /// zero-sized. Note that if `T` is zero-sized this means you will
    /// *not* get a RawVec with the requested capacity!
    ///
    /// # Panics
    ///
    /// * Panics if the requested capacity exceeds `usize::MAX` bytes.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM
    #[inline]
    pub fn with_capacity(cap: usize) -> Self {
        RawVec::allocate_in(cap, false, Global)
    }

    /// Like `with_capacity` but guarantees the buffer is zeroed.
    #[inline]
    pub fn with_capacity_zeroed(cap: usize) -> Self {
        RawVec::allocate_in(cap, true, Global)
    }
}

impl<T, A: Alloc> RawVec<T, A> {
    /// Reconstitutes a RawVec from a pointer, capacity, and allocator.
    ///
    /// # Undefined Behavior
    ///
    /// The ptr must be allocated (via the given allocator `a`), and with the given capacity. The
    /// capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems).
    /// If the ptr and capacity come from a RawVec created via `a`, then this is guaranteed.
    pub unsafe fn from_raw_parts_in(ptr: *mut T, cap: usize, a: A) -> Self {
        RawVec {
            ptr: Unique::new_unchecked(ptr),
            cap,
            a,
        }
    }
}

impl<T> RawVec<T, Global> {
    /// Reconstitutes a RawVec from a pointer, capacity.
    ///
    /// # Undefined Behavior
    ///
    /// The ptr must be allocated (on the system heap), and with the given capacity. The
    /// capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems).
    /// If the ptr and capacity come from a RawVec, then this is guaranteed.
    pub unsafe fn from_raw_parts(ptr: *mut T, cap: usize) -> Self {
        RawVec {
            ptr: Unique::new_unchecked(ptr),
            cap,
            a: Global,
        }
    }

    /// Converts a `Box<[T]>` into a `RawVec<T>`.
    pub fn from_box(mut slice: Box<[T]>) -> Self {
        unsafe {
            let result = RawVec::from_raw_parts(slice.as_mut_ptr(), slice.len());
            mem::forget(slice);
            result
        }
    }
}

impl<T, A: Alloc> RawVec<T, A> {
    /// Gets a raw pointer to the start of the allocation. Note that this is
    /// Unique::empty() if `cap = 0` or T is zero-sized. In the former case, you must
    /// be careful.
    pub fn ptr(&self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Gets the capacity of the allocation.
    ///
    /// This will always be `usize::MAX` if `T` is zero-sized.
    #[inline(always)]
    pub fn cap(&self) -> usize {
        if mem::size_of::<T>() == 0 {
            !0
        } else {
            self.cap
        }
    }

    /// Returns a shared reference to the allocator backing this RawVec.
    pub fn alloc(&self) -> &A {
        &self.a
    }

    /// Returns a mutable reference to the allocator backing this RawVec.
    pub fn alloc_mut(&mut self) -> &mut A {
        &mut self.a
    }

    fn current_layout(&self) -> Option<Layout> {
        if self.cap == 0 {
            None
        } else {
            // We have an allocated chunk of memory, so we can bypass runtime
            // checks to get our current layout.
            unsafe {
                let align = mem::align_of::<T>();
                let size = mem::size_of::<T>() * self.cap;
                Some(Layout::from_size_align_unchecked(size, align))
            }
        }
    }

    /// Doubles the size of the type's backing allocation. This is common enough
    /// to want to do that it's easiest to just have a dedicated method. Slightly
    /// more efficient logic can be provided for this than the general case.
    ///
    /// This function is ideal for when pushing elements one-at-a-time because
    /// you don't need to incur the costs of the more general computations
    /// reserve needs to do to guard against overflow. You do however need to
    /// manually check if your `len == cap`.
    ///
    /// # Panics
    ///
    /// * Panics if T is zero-sized on the assumption that you managed to exhaust
    ///   all `usize::MAX` slots in your imaginary buffer.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(raw_vec_internals)]
    /// # extern crate alloc;
    /// # use std::ptr;
    /// # use alloc::raw_vec::RawVec;
    /// struct MyVec<T> {
    ///     buf: RawVec<T>,
    ///     len: usize,
    /// }
    ///
    /// impl<T> MyVec<T> {
    ///     pub fn push(&mut self, elem: T) {
    ///         if self.len == self.buf.cap() { self.buf.double(); }
    ///         // double would have aborted or panicked if the len exceeded
    ///         // `isize::MAX` so this is safe to do unchecked now.
    ///         unsafe {
    ///             ptr::write(self.buf.ptr().add(self.len), elem);
    ///         }
    ///         self.len += 1;
    ///     }
    /// }
    /// # fn main() {
    /// #   let mut vec = MyVec { buf: RawVec::new(), len: 0 };
    /// #   vec.push(1);
    /// # }
    /// ```
    #[inline(never)]
    #[cold]
    pub fn double(&mut self) {
        unsafe {
            let elem_size = mem::size_of::<T>();

            // since we set the capacity to usize::MAX when elem_size is
            // 0, getting to here necessarily means the RawVec is overfull.
            assert!(elem_size != 0, "capacity overflow");

            let (new_cap, uniq) = match self.current_layout() {
                Some(cur) => {
                    // Since we guarantee that we never allocate more than
                    // isize::MAX bytes, `elem_size * self.cap <= isize::MAX` as
                    // a precondition, so this can't overflow. Additionally the
                    // alignment will never be too large as to "not be
                    // satisfiable", so `Layout::from_size_align` will always
                    // return `Some`.
                    //
                    // tl;dr; we bypass runtime checks due to dynamic assertions
                    // in this module, allowing us to use
                    // `from_size_align_unchecked`.
                    let new_cap = 2 * self.cap;
                    let new_size = new_cap * elem_size;
                    alloc_guard(new_size).unwrap_or_else(|_| capacity_overflow());
                    let ptr_res = self.a.realloc(NonNull::from(self.ptr).cast(),
                                                 cur,
                                                 new_size);
                    match ptr_res {
                        Ok(ptr) => (new_cap, ptr.cast().into()),
                        Err(_) => handle_alloc_error(
                            Layout::from_size_align_unchecked(new_size, cur.align())
                        ),
                    }
                }
                None => {
                    // skip to 4 because tiny Vec's are dumb; but not if that
                    // would cause overflow
                    let new_cap = if elem_size > (!0) / 8 { 1 } else { 4 };
                    match self.a.alloc_array::<T>(new_cap) {
                        Ok(ptr) => (new_cap, ptr.into()),
                        Err(_) => handle_alloc_error(Layout::array::<T>(new_cap).unwrap()),
                    }
                }
            };
            self.ptr = uniq;
            self.cap = new_cap;
        }
    }

    /// Attempts to double the size of the type's backing allocation in place. This is common
    /// enough to want to do that it's easiest to just have a dedicated method. Slightly
    /// more efficient logic can be provided for this than the general case.
    ///
    /// Returns `true` if the reallocation attempt has succeeded.
    ///
    /// # Panics
    ///
    /// * Panics if T is zero-sized on the assumption that you managed to exhaust
    ///   all `usize::MAX` slots in your imaginary buffer.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    #[inline(never)]
    #[cold]
    pub fn double_in_place(&mut self) -> bool {
        unsafe {
            let elem_size = mem::size_of::<T>();
            let old_layout = match self.current_layout() {
                Some(layout) => layout,
                None => return false, // nothing to double
            };

            // since we set the capacity to usize::MAX when elem_size is
            // 0, getting to here necessarily means the RawVec is overfull.
            assert!(elem_size != 0, "capacity overflow");

            // Since we guarantee that we never allocate more than isize::MAX
            // bytes, `elem_size * self.cap <= isize::MAX` as a precondition, so
            // this can't overflow.
            //
            // Similarly like with `double` above we can go straight to
            // `Layout::from_size_align_unchecked` as we know this won't
            // overflow and the alignment is sufficiently small.
            let new_cap = 2 * self.cap;
            let new_size = new_cap * elem_size;
            alloc_guard(new_size).unwrap_or_else(|_| capacity_overflow());
            match self.a.grow_in_place(NonNull::from(self.ptr).cast(), old_layout, new_size) {
                Ok(_) => {
                    // We can't directly divide `size`.
                    self.cap = new_cap;
                    true
                }
                Err(_) => {
                    false
                }
            }
        }
    }

    /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
    pub fn try_reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize)
           -> Result<(), CollectionAllocErr> {

        self.reserve_internal(used_cap, needed_extra_cap, Fallible, Exact)
    }

    /// Ensures that the buffer contains at least enough space to hold
    /// `used_cap + needed_extra_cap` elements. If it doesn't already,
    /// will reallocate the minimum possible amount of memory necessary.
    /// Generally this will be exactly the amount of memory necessary,
    /// but in principle the allocator is free to give back more than
    /// we asked for.
    ///
    /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate
    /// the requested space. This is not really unsafe, but the unsafe
    /// code *you* write that relies on the behavior of this function may break.
    ///
    /// # Panics
    ///
    /// * Panics if the requested capacity exceeds `usize::MAX` bytes.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM
    pub fn reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) {
        match self.reserve_internal(used_cap, needed_extra_cap, Infallible, Exact) {
            Err(CapacityOverflow) => capacity_overflow(),
            Err(AllocErr) => unreachable!(),
            Ok(()) => { /* yay */ }
         }
     }

    /// Calculates the buffer's new size given that it'll hold `used_cap +
    /// needed_extra_cap` elements. This logic is used in amortized reserve methods.
    /// Returns `(new_capacity, new_alloc_size)`.
    fn amortized_new_size(&self, used_cap: usize, needed_extra_cap: usize)
        -> Result<usize, CollectionAllocErr> {

        // Nothing we can really do about these checks :(
        let required_cap = used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?;
        // Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
        let double_cap = self.cap * 2;
        // `double_cap` guarantees exponential growth.
        Ok(cmp::max(double_cap, required_cap))
    }

    /// The same as `reserve`, but returns on errors instead of panicking or aborting.
    pub fn try_reserve(&mut self, used_cap: usize, needed_extra_cap: usize)
        -> Result<(), CollectionAllocErr> {
        self.reserve_internal(used_cap, needed_extra_cap, Fallible, Amortized)
    }

    /// Ensures that the buffer contains at least enough space to hold
    /// `used_cap + needed_extra_cap` elements. If it doesn't already have
    /// enough capacity, will reallocate enough space plus comfortable slack
    /// space to get amortized `O(1)` behavior. Will limit this behavior
    /// if it would needlessly cause itself to panic.
    ///
    /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate
    /// the requested space. This is not really unsafe, but the unsafe
    /// code *you* write that relies on the behavior of this function may break.
    ///
    /// This is ideal for implementing a bulk-push operation like `extend`.
    ///
    /// # Panics
    ///
    /// * Panics if the requested capacity exceeds `usize::MAX` bytes.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(raw_vec_internals)]
    /// # extern crate alloc;
    /// # use std::ptr;
    /// # use alloc::raw_vec::RawVec;
    /// struct MyVec<T> {
    ///     buf: RawVec<T>,
    ///     len: usize,
    /// }
    ///
    /// impl<T: Clone> MyVec<T> {
    ///     pub fn push_all(&mut self, elems: &[T]) {
    ///         self.buf.reserve(self.len, elems.len());
    ///         // reserve would have aborted or panicked if the len exceeded
    ///         // `isize::MAX` so this is safe to do unchecked now.
    ///         for x in elems {
    ///             unsafe {
    ///                 ptr::write(self.buf.ptr().add(self.len), x.clone());
    ///             }
    ///             self.len += 1;
    ///         }
    ///     }
    /// }
    /// # fn main() {
    /// #   let mut vector = MyVec { buf: RawVec::new(), len: 0 };
    /// #   vector.push_all(&[1, 3, 5, 7, 9]);
    /// # }
    /// ```
    pub fn reserve(&mut self, used_cap: usize, needed_extra_cap: usize) {
        match self.reserve_internal(used_cap, needed_extra_cap, Infallible, Amortized) {
            Err(CapacityOverflow) => capacity_overflow(),
            Err(AllocErr) => unreachable!(),
            Ok(()) => { /* yay */ }
        }
    }
    /// Attempts to ensure that the buffer contains at least enough space to hold
    /// `used_cap + needed_extra_cap` elements. If it doesn't already have
    /// enough capacity, will reallocate in place enough space plus comfortable slack
    /// space to get amortized `O(1)` behavior. Will limit this behaviour
    /// if it would needlessly cause itself to panic.
    ///
    /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate
    /// the requested space. This is not really unsafe, but the unsafe
    /// code *you* write that relies on the behavior of this function may break.
    ///
    /// Returns `true` if the reallocation attempt has succeeded.
    ///
    /// # Panics
    ///
    /// * Panics if the requested capacity exceeds `usize::MAX` bytes.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    pub fn reserve_in_place(&mut self, used_cap: usize, needed_extra_cap: usize) -> bool {
        unsafe {
            // NOTE: we don't early branch on ZSTs here because we want this
            // to actually catch "asking for more than usize::MAX" in that case.
            // If we make it past the first branch then we are guaranteed to
            // panic.

            // Don't actually need any more capacity. If the current `cap` is 0, we can't
            // reallocate in place.
            // Wrapping in case they give a bad `used_cap`
            let old_layout = match self.current_layout() {
                Some(layout) => layout,
                None => return false,
            };
            if self.cap().wrapping_sub(used_cap) >= needed_extra_cap {
                return false;
            }

            let new_cap = self.amortized_new_size(used_cap, needed_extra_cap)
                .unwrap_or_else(|_| capacity_overflow());

            // Here, `cap < used_cap + needed_extra_cap <= new_cap`
            // (regardless of whether `self.cap - used_cap` wrapped).
            // Therefore we can safely call grow_in_place.

            let new_layout = Layout::new::<T>().repeat(new_cap).unwrap().0;
            // FIXME: may crash and burn on over-reserve
            alloc_guard(new_layout.size()).unwrap_or_else(|_| capacity_overflow());
            match self.a.grow_in_place(
                NonNull::from(self.ptr).cast(), old_layout, new_layout.size(),
            ) {
                Ok(_) => {
                    self.cap = new_cap;
                    true
                }
                Err(_) => {
                    false
                }
            }
        }
    }

    /// Shrinks the allocation down to the specified amount. If the given amount
    /// is 0, actually completely deallocates.
    ///
    /// # Panics
    ///
    /// Panics if the given amount is *larger* than the current capacity.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM.
    pub fn shrink_to_fit(&mut self, amount: usize) {
        let elem_size = mem::size_of::<T>();

        // Set the `cap` because they might be about to promote to a `Box<[T]>`
        if elem_size == 0 {
            self.cap = amount;
            return;
        }

        // This check is my waterloo; it's the only thing Vec wouldn't have to do.
        assert!(self.cap >= amount, "Tried to shrink to a larger capacity");

        if amount == 0 {
            // We want to create a new zero-length vector within the
            // same allocator.  We use ptr::write to avoid an
            // erroneous attempt to drop the contents, and we use
            // ptr::read to sidestep condition against destructuring
            // types that implement Drop.

            unsafe {
                let a = ptr::read(&self.a as *const A);
                self.dealloc_buffer();
                ptr::write(self, RawVec::new_in(a));
            }
        } else if self.cap != amount {
            unsafe {
                // We know here that our `amount` is greater than zero. This
                // implies, via the assert above, that capacity is also greater
                // than zero, which means that we've got a current layout that
                // "fits"
                //
                // We also know that `self.cap` is greater than `amount`, and
                // consequently we don't need runtime checks for creating either
                // layout
                let old_size = elem_size * self.cap;
                let new_size = elem_size * amount;
                let align = mem::align_of::<T>();
                let old_layout = Layout::from_size_align_unchecked(old_size, align);
                match self.a.realloc(NonNull::from(self.ptr).cast(),
                                     old_layout,
                                     new_size) {
                    Ok(p) => self.ptr = p.cast().into(),
                    Err(_) => handle_alloc_error(
                        Layout::from_size_align_unchecked(new_size, align)
                    ),
                }
            }
            self.cap = amount;
        }
    }
}

enum Fallibility {
    Fallible,
    Infallible,
}

use Fallibility::*;

enum ReserveStrategy {
    Exact,
    Amortized,
}

use ReserveStrategy::*;

impl<T, A: Alloc> RawVec<T, A> {
    fn reserve_internal(
        &mut self,
        used_cap: usize,
        needed_extra_cap: usize,
        fallibility: Fallibility,
        strategy: ReserveStrategy,
    ) -> Result<(), CollectionAllocErr> {
        unsafe {
            use crate::alloc::AllocErr;

            // NOTE: we don't early branch on ZSTs here because we want this
            // to actually catch "asking for more than usize::MAX" in that case.
            // If we make it past the first branch then we are guaranteed to
            // panic.

            // Don't actually need any more capacity.
            // Wrapping in case they gave a bad `used_cap`.
            if self.cap().wrapping_sub(used_cap) >= needed_extra_cap {
                return Ok(());
            }

            // Nothing we can really do about these checks :(
            let new_cap = match strategy {
                Exact => used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?,
                Amortized => self.amortized_new_size(used_cap, needed_extra_cap)?,
            };
            let new_layout = Layout::array::<T>(new_cap).map_err(|_| CapacityOverflow)?;

            alloc_guard(new_layout.size())?;

            let res = match self.current_layout() {
                Some(layout) => {
                    debug_assert!(new_layout.align() == layout.align());
                    self.a.realloc(NonNull::from(self.ptr).cast(), layout, new_layout.size())
                }
                None => self.a.alloc(new_layout),
            };

            match (&res, fallibility) {
                (Err(AllocErr), Infallible) => handle_alloc_error(new_layout),
                _ => {}
            }

            self.ptr = res?.cast().into();
            self.cap = new_cap;

            Ok(())
        }
    }

}

impl<T> RawVec<T, Global> {
    /// Converts the entire buffer into `Box<[T]>`.
    ///
    /// Note that this will correctly reconstitute any `cap` changes
    /// that may have been performed. (see description of type for details)
    ///
    /// # Undefined Behavior
    ///
    /// All elements of `RawVec<T, Global>` must be initialized. Notice that
    /// the rules around uninitialized boxed values are not finalized yet,
    /// but until they are, it is advisable to avoid them.
    pub unsafe fn into_box(self) -> Box<[T]> {
        // NOTE: not calling `cap()` here, actually using the real `cap` field!
        let slice = slice::from_raw_parts_mut(self.ptr(), self.cap);
        let output: Box<[T]> = Box::from_raw(slice);
        mem::forget(self);
        output
    }
}

impl<T, A: Alloc> RawVec<T, A> {
    /// Frees the memory owned by the RawVec *without* trying to Drop its contents.
    pub unsafe fn dealloc_buffer(&mut self) {
        let elem_size = mem::size_of::<T>();
        if elem_size != 0 {
            if let Some(layout) = self.current_layout() {
                self.a.dealloc(NonNull::from(self.ptr).cast(), layout);
            }
        }
    }
}

unsafe impl<#[may_dangle] T, A: Alloc> Drop for RawVec<T, A> {
    /// Frees the memory owned by the RawVec *without* trying to Drop its contents.
    fn drop(&mut self) {
        unsafe { self.dealloc_buffer(); }
    }
}



// We need to guarantee the following:
// * We don't ever allocate `> isize::MAX` byte-size objects
// * We don't overflow `usize::MAX` and actually allocate too little
//
// On 64-bit we just need to check for overflow since trying to allocate
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
// an extra guard for this in case we're running on a platform which can use
// all 4GB in user-space. e.g., PAE or x32

#[inline]
fn alloc_guard(alloc_size: usize) -> Result<(), CollectionAllocErr> {
    if mem::size_of::<usize>() < 8 && alloc_size > core::isize::MAX as usize {
        Err(CapacityOverflow)
    } else {
        Ok(())
    }
}

// One central function responsible for reporting capacity overflows. This'll
// ensure that the code generation related to these panics is minimal as there's
// only one location which panics rather than a bunch throughout the module.
fn capacity_overflow() -> ! {
    panic!("capacity overflow")
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn allocator_param() {
        use crate::alloc::AllocErr;

        // Writing a test of integration between third-party
        // allocators and RawVec is a little tricky because the RawVec
        // API does not expose fallible allocation methods, so we
        // cannot check what happens when allocator is exhausted
        // (beyond detecting a panic).
        //
        // Instead, this just checks that the RawVec methods do at
        // least go through the Allocator API when it reserves
        // storage.

        // A dumb allocator that consumes a fixed amount of fuel
        // before allocation attempts start failing.
        struct BoundedAlloc { fuel: usize }
        unsafe impl Alloc for BoundedAlloc {
            unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
                let size = layout.size();
                if size > self.fuel {
                    return Err(AllocErr);
                }
                match Global.alloc(layout) {
                    ok @ Ok(_) => { self.fuel -= size; ok }
                    err @ Err(_) => err,
                }
            }
            unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
                Global.dealloc(ptr, layout)
            }
        }

        let a = BoundedAlloc { fuel: 500 };
        let mut v: RawVec<u8, _> = RawVec::with_capacity_in(50, a);
        assert_eq!(v.a.fuel, 450);
        v.reserve(50, 150); // (causes a realloc, thus using 50 + 150 = 200 units of fuel)
        assert_eq!(v.a.fuel, 250);
    }

    #[test]
    fn reserve_does_not_overallocate() {
        {
            let mut v: RawVec<u32> = RawVec::new();
            // First `reserve` allocates like `reserve_exact`
            v.reserve(0, 9);
            assert_eq!(9, v.cap());
        }

        {
            let mut v: RawVec<u32> = RawVec::new();
            v.reserve(0, 7);
            assert_eq!(7, v.cap());
            // 97 if more than double of 7, so `reserve` should work
            // like `reserve_exact`.
            v.reserve(7, 90);
            assert_eq!(97, v.cap());
        }

        {
            let mut v: RawVec<u32> = RawVec::new();
            v.reserve(0, 12);
            assert_eq!(12, v.cap());
            v.reserve(12, 3);
            // 3 is less than half of 12, so `reserve` must grow
            // exponentially. At the time of writing this test grow
            // factor is 2, so new capacity is 24, however, grow factor
            // of 1.5 is OK too. Hence `>= 18` in assert.
            assert!(v.cap() >= 12 + 12 / 2);
        }
    }


}