1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
use crate::ops::{Mul, Add}; use crate::num::Wrapping; /// Trait to represent types that can be created by summing up an iterator. /// /// This trait is used to implement the [`sum`] method on iterators. Types which /// implement the trait can be generated by the [`sum`] method. Like /// [`FromIterator`] this trait should rarely be called directly and instead /// interacted with through [`Iterator::sum`]. /// /// [`sum`]: ../../std/iter/trait.Sum.html#tymethod.sum /// [`FromIterator`]: ../../std/iter/trait.FromIterator.html /// [`Iterator::sum`]: ../../std/iter/trait.Iterator.html#method.sum #[stable(feature = "iter_arith_traits", since = "1.12.0")] pub trait Sum<A = Self>: Sized { /// Method which takes an iterator and generates `Self` from the elements by /// "summing up" the items. #[stable(feature = "iter_arith_traits", since = "1.12.0")] fn sum<I: Iterator<Item=A>>(iter: I) -> Self; } /// Trait to represent types that can be created by multiplying elements of an /// iterator. /// /// This trait is used to implement the [`product`] method on iterators. Types /// which implement the trait can be generated by the [`product`] method. Like /// [`FromIterator`] this trait should rarely be called directly and instead /// interacted with through [`Iterator::product`]. /// /// [`product`]: ../../std/iter/trait.Product.html#tymethod.product /// [`FromIterator`]: ../../std/iter/trait.FromIterator.html /// [`Iterator::product`]: ../../std/iter/trait.Iterator.html#method.product #[stable(feature = "iter_arith_traits", since = "1.12.0")] pub trait Product<A = Self>: Sized { /// Method which takes an iterator and generates `Self` from the elements by /// multiplying the items. #[stable(feature = "iter_arith_traits", since = "1.12.0")] fn product<I: Iterator<Item=A>>(iter: I) -> Self; } // N.B., explicitly use Add and Mul here to inherit overflow checks macro_rules! integer_sum_product { (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($( #[$attr] impl Sum for $a { fn sum<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold($zero, Add::add) } } #[$attr] impl Product for $a { fn product<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold($one, Mul::mul) } } #[$attr] impl<'a> Sum<&'a $a> for $a { fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold($zero, Add::add) } } #[$attr] impl<'a> Product<&'a $a> for $a { fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold($one, Mul::mul) } } )*); ($($a:ty)*) => ( integer_sum_product!(@impls 0, 1, #[stable(feature = "iter_arith_traits", since = "1.12.0")], $($a)+); integer_sum_product!(@impls Wrapping(0), Wrapping(1), #[stable(feature = "wrapping_iter_arith", since = "1.14.0")], $(Wrapping<$a>)+); ); } macro_rules! float_sum_product { ($($a:ident)*) => ($( #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl Sum for $a { fn sum<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold(0.0, |a, b| a + b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl Product for $a { fn product<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold(1.0, |a, b| a * b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl<'a> Sum<&'a $a> for $a { fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold(0.0, |a, b| a + *b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl<'a> Product<&'a $a> for $a { fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold(1.0, |a, b| a * *b) } } )*) } integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize } float_sum_product! { f32 f64 } /// An iterator adapter that produces output as long as the underlying /// iterator produces `Result::Ok` values. /// /// If an error is encountered, the iterator stops and the error is /// stored. The error may be recovered later via `reconstruct`. struct ResultShunt<I, E> { iter: I, error: Option<E>, } impl<I, T, E> ResultShunt<I, E> where I: Iterator<Item = Result<T, E>> { /// Process the given iterator as if it yielded a `T` instead of a /// `Result<T, _>`. Any errors will stop the inner iterator and /// the overall result will be an error. pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E> where F: FnMut(&mut Self) -> U { let mut shunt = ResultShunt::new(iter); let value = f(shunt.by_ref()); shunt.reconstruct(value) } fn new(iter: I) -> Self { ResultShunt { iter, error: None, } } /// Consume the adapter and rebuild a `Result` value. This should /// *always* be called, otherwise any potential error would be /// lost. fn reconstruct<U>(self, val: U) -> Result<U, E> { match self.error { None => Ok(val), Some(e) => Err(e), } } } impl<I, T, E> Iterator for ResultShunt<I, E> where I: Iterator<Item = Result<T, E>> { type Item = T; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(Ok(v)) => Some(v), Some(Err(e)) => { self.error = Some(e); None } None => None, } } fn size_hint(&self) -> (usize, Option<usize>) { if self.error.is_some() { (0, Some(0)) } else { let (_, upper) = self.iter.size_hint(); (0, upper) } } } #[stable(feature = "iter_arith_traits_result", since="1.16.0")] impl<T, U, E> Sum<Result<U, E>> for Result<T, E> where T: Sum<U>, { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, /// the sum of all elements is returned. /// /// # Examples /// /// This sums up every integer in a vector, rejecting the sum if a negative /// element is encountered: /// /// ``` /// let v = vec![1, 2]; /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32| /// if x < 0 { Err("Negative element found") } /// else { Ok(x) } /// ).sum(); /// assert_eq!(res, Ok(3)); /// ``` fn sum<I>(iter: I) -> Result<T, E> where I: Iterator<Item = Result<U, E>>, { ResultShunt::process(iter, |i| i.sum()) } } #[stable(feature = "iter_arith_traits_result", since="1.16.0")] impl<T, U, E> Product<Result<U, E>> for Result<T, E> where T: Product<U>, { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, /// the product of all elements is returned. fn product<I>(iter: I) -> Result<T, E> where I: Iterator<Item = Result<U, E>>, { ResultShunt::process(iter, |i| i.product()) } } /// An iterator adapter that produces output as long as the underlying /// iterator produces `Option::Some` values. struct OptionShunt<I> { iter: I, exited_early: bool, } impl<I, T> OptionShunt<I> where I: Iterator<Item = Option<T>>, { /// Process the given iterator as if it yielded a `T` instead of a /// `Option<T>`. Any `None` value will stop the inner iterator and /// the overall result will be a `None`. pub fn process<F, U>(iter: I, mut f: F) -> Option<U> where F: FnMut(&mut Self) -> U, { let mut shunt = OptionShunt::new(iter); let value = f(shunt.by_ref()); shunt.reconstruct(value) } fn new(iter: I) -> Self { OptionShunt { iter, exited_early: false, } } /// Consume the adapter and rebuild a `Option` value. fn reconstruct<U>(self, val: U) -> Option<U> { if self.exited_early { None } else { Some(val) } } } impl<I, T> Iterator for OptionShunt<I> where I: Iterator<Item = Option<T>>, { type Item = T; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(Some(v)) => Some(v), Some(None) => { self.exited_early = true; None } None => None, } } fn size_hint(&self) -> (usize, Option<usize>) { if self.exited_early { (0, Some(0)) } else { let (_, upper) = self.iter.size_hint(); (0, upper) } } } #[stable(feature = "iter_arith_traits_option", since = "1.37.0")] impl<T, U> Sum<Option<U>> for Option<T> where T: Sum<U>, { /// Takes each element in the `Iterator`: if it is a `None`, no further /// elements are taken, and the `None` is returned. Should no `None` occur, /// the sum of all elements is returned. /// /// # Examples /// /// This sums up the position of the character 'a' in a vector of strings, /// if a word did not have the character 'a' the operation returns `None`: /// /// ``` /// let words = vec!["have", "a", "great", "day"]; /// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum(); /// assert_eq!(total, Some(5)); /// ``` fn sum<I>(iter: I) -> Option<T> where I: Iterator<Item = Option<U>>, { OptionShunt::process(iter, |i| i.sum()) } } #[stable(feature = "iter_arith_traits_option", since = "1.37.0")] impl<T, U> Product<Option<U>> for Option<T> where T: Product<U>, { /// Takes each element in the `Iterator`: if it is a `None`, no further /// elements are taken, and the `None` is returned. Should no `None` occur, /// the product of all elements is returned. fn product<I>(iter: I) -> Option<T> where I: Iterator<Item = Option<U>>, { OptionShunt::process(iter, |i| i.product()) } }