1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
//! Almost direct (but slightly optimized) Rust translation of Figure 3 of "Printing //! Floating-Point Numbers Quickly and Accurately"[^1]. //! //! [^1]: Burger, R. G. and Dybvig, R. K. 1996. Printing floating-point numbers //! quickly and accurately. SIGPLAN Not. 31, 5 (May. 1996), 108-116. use crate::cmp::Ordering; use crate::num::flt2dec::{Decoded, MAX_SIG_DIGITS, round_up}; use crate::num::flt2dec::estimator::estimate_scaling_factor; use crate::num::bignum::Digit32 as Digit; use crate::num::bignum::Big32x40 as Big; static POW10: [Digit; 10] = [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000]; static TWOPOW10: [Digit; 10] = [2, 20, 200, 2000, 20000, 200000, 2000000, 20000000, 200000000, 2000000000]; // precalculated arrays of `Digit`s for 10^(2^n) static POW10TO16: [Digit; 2] = [0x6fc10000, 0x2386f2]; static POW10TO32: [Digit; 4] = [0, 0x85acef81, 0x2d6d415b, 0x4ee]; static POW10TO64: [Digit; 7] = [0, 0, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x184f03]; static POW10TO128: [Digit; 14] = [0, 0, 0, 0, 0x2e953e01, 0x3df9909, 0xf1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, 0xe91f2603, 0x24e]; static POW10TO256: [Digit; 27] = [0, 0, 0, 0, 0, 0, 0, 0, 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70, 0xd595d80f, 0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0, 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, 0xf46eeddc, 0x5fdcefce, 0x553f7]; #[doc(hidden)] pub fn mul_pow10(x: &mut Big, n: usize) -> &mut Big { debug_assert!(n < 512); if n & 7 != 0 { x.mul_small(POW10[n & 7]); } if n & 8 != 0 { x.mul_small(POW10[8]); } if n & 16 != 0 { x.mul_digits(&POW10TO16); } if n & 32 != 0 { x.mul_digits(&POW10TO32); } if n & 64 != 0 { x.mul_digits(&POW10TO64); } if n & 128 != 0 { x.mul_digits(&POW10TO128); } if n & 256 != 0 { x.mul_digits(&POW10TO256); } x } fn div_2pow10(x: &mut Big, mut n: usize) -> &mut Big { let largest = POW10.len() - 1; while n > largest { x.div_rem_small(POW10[largest]); n -= largest; } x.div_rem_small(TWOPOW10[n]); x } // only usable when `x < 16 * scale`; `scaleN` should be `scale.mul_small(N)` fn div_rem_upto_16<'a>(x: &'a mut Big, scale: &Big, scale2: &Big, scale4: &Big, scale8: &Big) -> (u8, &'a mut Big) { let mut d = 0; if *x >= *scale8 { x.sub(scale8); d += 8; } if *x >= *scale4 { x.sub(scale4); d += 4; } if *x >= *scale2 { x.sub(scale2); d += 2; } if *x >= *scale { x.sub(scale); d += 1; } debug_assert!(*x < *scale); (d, x) } /// The shortest mode implementation for Dragon. pub fn format_shortest(d: &Decoded, buf: &mut [u8]) -> (/*#digits*/ usize, /*exp*/ i16) { // the number `v` to format is known to be: // - equal to `mant * 2^exp`; // - preceded by `(mant - 2 * minus) * 2^exp` in the original type; and // - followed by `(mant + 2 * plus) * 2^exp` in the original type. // // obviously, `minus` and `plus` cannot be zero. (for infinities, we use out-of-range values.) // also we assume that at least one digit is generated, i.e., `mant` cannot be zero too. // // this also means that any number between `low = (mant - minus) * 2^exp` and // `high = (mant + plus) * 2^exp` will map to this exact floating point number, // with bounds included when the original mantissa was even (i.e., `!mant_was_odd`). assert!(d.mant > 0); assert!(d.minus > 0); assert!(d.plus > 0); assert!(d.mant.checked_add(d.plus).is_some()); assert!(d.mant.checked_sub(d.minus).is_some()); assert!(buf.len() >= MAX_SIG_DIGITS); // `a.cmp(&b) < rounding` is `if d.inclusive {a <= b} else {a < b}` let rounding = if d.inclusive {Ordering::Greater} else {Ordering::Equal}; // estimate `k_0` from original inputs satisfying `10^(k_0-1) < high <= 10^(k_0+1)`. // the tight bound `k` satisfying `10^(k-1) < high <= 10^k` is calculated later. let mut k = estimate_scaling_factor(d.mant + d.plus, d.exp); // convert `{mant, plus, minus} * 2^exp` into the fractional form so that: // - `v = mant / scale` // - `low = (mant - minus) / scale` // - `high = (mant + plus) / scale` let mut mant = Big::from_u64(d.mant); let mut minus = Big::from_u64(d.minus); let mut plus = Big::from_u64(d.plus); let mut scale = Big::from_small(1); if d.exp < 0 { scale.mul_pow2(-d.exp as usize); } else { mant.mul_pow2(d.exp as usize); minus.mul_pow2(d.exp as usize); plus.mul_pow2(d.exp as usize); } // divide `mant` by `10^k`. now `scale / 10 < mant + plus <= scale * 10`. if k >= 0 { mul_pow10(&mut scale, k as usize); } else { mul_pow10(&mut mant, -k as usize); mul_pow10(&mut minus, -k as usize); mul_pow10(&mut plus, -k as usize); } // fixup when `mant + plus > scale` (or `>=`). // we are not actually modifying `scale`, since we can skip the initial multiplication instead. // now `scale < mant + plus <= scale * 10` and we are ready to generate digits. // // note that `d[0]` *can* be zero, when `scale - plus < mant < scale`. // in this case rounding-up condition (`up` below) will be triggered immediately. if scale.cmp(mant.clone().add(&plus)) < rounding { // equivalent to scaling `scale` by 10 k += 1; } else { mant.mul_small(10); minus.mul_small(10); plus.mul_small(10); } // cache `(2, 4, 8) * scale` for digit generation. let mut scale2 = scale.clone(); scale2.mul_pow2(1); let mut scale4 = scale.clone(); scale4.mul_pow2(2); let mut scale8 = scale.clone(); scale8.mul_pow2(3); let mut down; let mut up; let mut i = 0; loop { // invariants, where `d[0..n-1]` are digits generated so far: // - `v = mant / scale * 10^(k-n-1) + d[0..n-1] * 10^(k-n)` // - `v - low = minus / scale * 10^(k-n-1)` // - `high - v = plus / scale * 10^(k-n-1)` // - `(mant + plus) / scale <= 10` (thus `mant / scale < 10`) // where `d[i..j]` is a shorthand for `d[i] * 10^(j-i) + ... + d[j-1] * 10 + d[j]`. // generate one digit: `d[n] = floor(mant / scale) < 10`. let (d, _) = div_rem_upto_16(&mut mant, &scale, &scale2, &scale4, &scale8); debug_assert!(d < 10); buf[i] = b'0' + d; i += 1; // this is a simplified description of the modified Dragon algorithm. // many intermediate derivations and completeness arguments are omitted for convenience. // // start with modified invariants, as we've updated `n`: // - `v = mant / scale * 10^(k-n) + d[0..n-1] * 10^(k-n)` // - `v - low = minus / scale * 10^(k-n)` // - `high - v = plus / scale * 10^(k-n)` // // assume that `d[0..n-1]` is the shortest representation between `low` and `high`, // i.e., `d[0..n-1]` satisfies both of the following but `d[0..n-2]` doesn't: // - `low < d[0..n-1] * 10^(k-n) < high` (bijectivity: digits round to `v`); and // - `abs(v / 10^(k-n) - d[0..n-1]) <= 1/2` (the last digit is correct). // // the second condition simplifies to `2 * mant <= scale`. // solving invariants in terms of `mant`, `low` and `high` yields // a simpler version of the first condition: `-plus < mant < minus`. // since `-plus < 0 <= mant`, we have the correct shortest representation // when `mant < minus` and `2 * mant <= scale`. // (the former becomes `mant <= minus` when the original mantissa is even.) // // when the second doesn't hold (`2 * mant > scale`), we need to increase the last digit. // this is enough for restoring that condition: we already know that // the digit generation guarantees `0 <= v / 10^(k-n) - d[0..n-1] < 1`. // in this case, the first condition becomes `-plus < mant - scale < minus`. // since `mant < scale` after the generation, we have `scale < mant + plus`. // (again, this becomes `scale <= mant + plus` when the original mantissa is even.) // // in short: // - stop and round `down` (keep digits as is) when `mant < minus` (or `<=`). // - stop and round `up` (increase the last digit) when `scale < mant + plus` (or `<=`). // - keep generating otherwise. down = mant.cmp(&minus) < rounding; up = scale.cmp(mant.clone().add(&plus)) < rounding; if down || up { break; } // we have the shortest representation, proceed to the rounding // restore the invariants. // this makes the algorithm always terminating: `minus` and `plus` always increases, // but `mant` is clipped modulo `scale` and `scale` is fixed. mant.mul_small(10); minus.mul_small(10); plus.mul_small(10); } // rounding up happens when // i) only the rounding-up condition was triggered, or // ii) both conditions were triggered and tie breaking prefers rounding up. if up && (!down || *mant.mul_pow2(1) >= scale) { // if rounding up changes the length, the exponent should also change. // it seems that this condition is very hard to satisfy (possibly impossible), // but we are just being safe and consistent here. if let Some(c) = round_up(buf, i) { buf[i] = c; i += 1; k += 1; } } (i, k) } /// The exact and fixed mode implementation for Dragon. pub fn format_exact(d: &Decoded, buf: &mut [u8], limit: i16) -> (/*#digits*/ usize, /*exp*/ i16) { assert!(d.mant > 0); assert!(d.minus > 0); assert!(d.plus > 0); assert!(d.mant.checked_add(d.plus).is_some()); assert!(d.mant.checked_sub(d.minus).is_some()); // estimate `k_0` from original inputs satisfying `10^(k_0-1) < v <= 10^(k_0+1)`. let mut k = estimate_scaling_factor(d.mant, d.exp); // `v = mant / scale`. let mut mant = Big::from_u64(d.mant); let mut scale = Big::from_small(1); if d.exp < 0 { scale.mul_pow2(-d.exp as usize); } else { mant.mul_pow2(d.exp as usize); } // divide `mant` by `10^k`. now `scale / 10 < mant <= scale * 10`. if k >= 0 { mul_pow10(&mut scale, k as usize); } else { mul_pow10(&mut mant, -k as usize); } // fixup when `mant + plus >= scale`, where `plus / scale = 10^-buf.len() / 2`. // in order to keep the fixed-size bignum, we actually use `mant + floor(plus) >= scale`. // we are not actually modifying `scale`, since we can skip the initial multiplication instead. // again with the shortest algorithm, `d[0]` can be zero but will be eventually rounded up. if *div_2pow10(&mut scale.clone(), buf.len()).add(&mant) >= scale { // equivalent to scaling `scale` by 10 k += 1; } else { mant.mul_small(10); } // if we are working with the last-digit limitation, we need to shorten the buffer // before the actual rendering in order to avoid double rounding. // note that we have to enlarge the buffer again when rounding up happens! let mut len = if k < limit { // oops, we cannot even produce *one* digit. // this is possible when, say, we've got something like 9.5 and it's being rounded to 10. // we return an empty buffer, with an exception of the later rounding-up case // which occurs when `k == limit` and has to produce exactly one digit. 0 } else if ((k as i32 - limit as i32) as usize) < buf.len() { (k - limit) as usize } else { buf.len() }; if len > 0 { // cache `(2, 4, 8) * scale` for digit generation. // (this can be expensive, so do not calculate them when the buffer is empty.) let mut scale2 = scale.clone(); scale2.mul_pow2(1); let mut scale4 = scale.clone(); scale4.mul_pow2(2); let mut scale8 = scale.clone(); scale8.mul_pow2(3); for i in 0..len { if mant.is_zero() { // following digits are all zeroes, we stop here // do *not* try to perform rounding! rather, fill remaining digits. for c in &mut buf[i..len] { *c = b'0'; } return (len, k); } let mut d = 0; if mant >= scale8 { mant.sub(&scale8); d += 8; } if mant >= scale4 { mant.sub(&scale4); d += 4; } if mant >= scale2 { mant.sub(&scale2); d += 2; } if mant >= scale { mant.sub(&scale); d += 1; } debug_assert!(mant < scale); debug_assert!(d < 10); buf[i] = b'0' + d; mant.mul_small(10); } } // rounding up if we stop in the middle of digits // if the following digits are exactly 5000..., check the prior digit and try to // round to even (i.e., avoid rounding up when the prior digit is even). let order = mant.cmp(scale.mul_small(5)); if order == Ordering::Greater || (order == Ordering::Equal && (len == 0 || buf[len-1] & 1 == 1)) { // if rounding up changes the length, the exponent should also change. // but we've been requested a fixed number of digits, so do not alter the buffer... if let Some(c) = round_up(buf, len) { // ...unless we've been requested the fixed precision instead. // we also need to check that, if the original buffer was empty, // the additional digit can only be added when `k == limit` (edge case). k += 1; if k > limit && len < buf.len() { buf[len] = c; len += 1; } } } (len, k) }