1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use crate::convert::From;
use crate::ops::{CoerceUnsized, DispatchFromDyn};
use crate::fmt;
use crate::hash;
use crate::marker::Unsize;
use crate::mem;
use crate::ptr::Unique;
use crate::cmp::Ordering;

/// `*mut T` but non-zero and covariant.
///
/// This is often the correct thing to use when building data structures using
/// raw pointers, but is ultimately more dangerous to use because of its additional
/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
///
/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
/// is never dereferenced. This is so that enums may use this forbidden value
/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
/// However the pointer may still dangle if it isn't dereferenced.
///
/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. If this is incorrect
/// for your use case, you should include some [`PhantomData`] in your type to
/// provide invariance, such as `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
/// Usually this won't be necessary; covariance is correct for most safe abstractions,
/// such as `Box`, `Rc`, `Arc`, `Vec`, and `LinkedList`. This is the case because they
/// provide a public API that follows the normal shared XOR mutable rules of Rust.
///
/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
/// not change the fact that mutating through a (pointer derived from a) shared
/// reference is undefined behavior unless the mutation happens inside an
/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
/// reference. When using this `From` instance without an `UnsafeCell<T>`,
/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
/// is never used for mutation.
///
/// [`PhantomData`]: ../marker/struct.PhantomData.html
/// [`UnsafeCell<T>`]: ../cell/struct.UnsafeCell.html
#[stable(feature = "nonnull", since = "1.25.0")]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[cfg_attr(not(stage0), rustc_nonnull_optimization_guaranteed)]
pub struct NonNull<T: ?Sized> {
    pointer: *const T,
}

/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Send for NonNull<T> { }

/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Sync for NonNull<T> { }

impl<T: Sized> NonNull<T> {
    /// Creates a new `NonNull` that is dangling, but well-aligned.
    ///
    /// This is useful for initializing types which lazily allocate, like
    /// `Vec::new` does.
    ///
    /// Note that the pointer value may potentially represent a valid pointer to
    /// a `T`, which means this must not be used as a "not yet initialized"
    /// sentinel value. Types that lazily allocate must track initialization by
    /// some other means.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub const fn dangling() -> Self {
        unsafe {
            let ptr = mem::align_of::<T>() as *mut T;
            NonNull::new_unchecked(ptr)
        }
    }
}

impl<T: ?Sized> NonNull<T> {
    /// Creates a new `NonNull`.
    ///
    /// # Safety
    ///
    /// `ptr` must be non-null.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
        NonNull { pointer: ptr as _ }
    }

    /// Creates a new `NonNull` if `ptr` is non-null.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub fn new(ptr: *mut T) -> Option<Self> {
        if !ptr.is_null() {
            Some(unsafe { Self::new_unchecked(ptr) })
        } else {
            None
        }
    }

    /// Acquires the underlying `*mut` pointer.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub const fn as_ptr(self) -> *mut T {
        self.pointer as *mut T
    }

    /// Dereferences the content.
    ///
    /// The resulting lifetime is bound to self so this behaves "as if"
    /// it were actually an instance of T that is getting borrowed. If a longer
    /// (unbound) lifetime is needed, use `&*my_ptr.as_ptr()`.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub unsafe fn as_ref(&self) -> &T {
        &*self.as_ptr()
    }

    /// Mutably dereferences the content.
    ///
    /// The resulting lifetime is bound to self so this behaves "as if"
    /// it were actually an instance of T that is getting borrowed. If a longer
    /// (unbound) lifetime is needed, use `&mut *my_ptr.as_ptr()`.
    #[stable(feature = "nonnull", since = "1.25.0")]
    #[inline]
    pub unsafe fn as_mut(&mut self) -> &mut T {
        &mut *self.as_ptr()
    }

    /// Cast to a pointer of another type
    #[stable(feature = "nonnull_cast", since = "1.27.0")]
    #[inline]
    pub const fn cast<U>(self) -> NonNull<U> {
        unsafe {
            NonNull::new_unchecked(self.as_ptr() as *mut U)
        }
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Clone for NonNull<T> {
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Copy for NonNull<T> { }

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized, U: ?Sized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> { }

#[unstable(feature = "dispatch_from_dyn", issue = "0")]
impl<T: ?Sized, U: ?Sized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> { }

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Debug for NonNull<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&self.as_ptr(), f)
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Pointer for NonNull<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&self.as_ptr(), f)
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Eq for NonNull<T> {}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialEq for NonNull<T> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.as_ptr() == other.as_ptr()
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Ord for NonNull<T> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        self.as_ptr().cmp(&other.as_ptr())
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialOrd for NonNull<T> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.as_ptr().partial_cmp(&other.as_ptr())
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> hash::Hash for NonNull<T> {
    #[inline]
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.as_ptr().hash(state)
    }
}

#[unstable(feature = "ptr_internals", issue = "0")]
impl<T: ?Sized> From<Unique<T>> for NonNull<T> {
    #[inline]
    fn from(unique: Unique<T>) -> Self {
        unsafe { NonNull::new_unchecked(unique.as_ptr()) }
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> From<&mut T> for NonNull<T> {
    #[inline]
    fn from(reference: &mut T) -> Self {
        unsafe { NonNull { pointer: reference as *mut T } }
    }
}

#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> From<&T> for NonNull<T> {
    #[inline]
    fn from(reference: &T) -> Self {
        unsafe { NonNull { pointer: reference as *const T } }
    }
}