1.33.0[−][src]Struct core::pin::Pin
A pinned pointer.
This is a wrapper around a kind of pointer which makes that pointer "pin" its
value in place, preventing the value referenced by that pointer from being moved
unless it implements Unpin
.
See the pin
module documentation for an explanation of pinning.
Methods
impl<P: Deref> Pin<P> where
P::Target: Unpin,
[src]
P::Target: Unpin,
ⓘImportant traits for Pin<P>pub fn new(pointer: P) -> Pin<P>
[src]
Construct a new Pin<P>
around a pointer to some data of a type that
implements Unpin
.
Unlike Pin::new_unchecked
, this method is safe because the pointer
P
dereferences to an Unpin
type, which cancels the pinning guarantees.
pub fn into_inner(pin: Pin<P>) -> P
[src]
Unwraps this Pin<P>
returning the underlying pointer.
This requires that the data inside this Pin
is Unpin
so that we
can ignore the pinning invariants when unwrapping it.
impl<P: Deref> Pin<P>
[src]
ⓘImportant traits for Pin<P>pub unsafe fn new_unchecked(pointer: P) -> Pin<P>
[src]
Construct a new Pin<P>
around a reference to some data of a type that
may or may not implement Unpin
.
If pointer
dereferences to an Unpin
type, Pin::new
should be used
instead.
Safety
This constructor is unsafe because we cannot guarantee that the data
pointed to by pointer
is pinned, meaning that the data will not be moved or
its storage invalidated until it gets dropped. If the constructed Pin<P>
does
not guarantee that the data P
points to is pinned, that is a violation of
the API contract and may lead to undefined behavior in later (safe) operations.
By using this method, you are making a promise about the P::Deref
and
P::DerefMut
implementations, if they exist. Most importantly, they
must not move out of their self
arguments: Pin::as_mut
and Pin::as_ref
will call DerefMut::deref_mut
and Deref::deref
on the pinned pointer
and expect these methods to uphold the pinning invariants.
Moreover, by calling this method you promise that the reference P
dereferences to will not be moved out of again; in particular, it
must not be possible to obtain a &mut P::Target
and then
move out of that reference (using, for example mem::swap
).
For example, calling Pin::new_unchecked
on an &'a mut T
is unsafe because
while you are able to pin it for the given lifetime 'a
, you have no control
over whether it is kept pinned once 'a
ends:
use std::mem; use std::pin::Pin; fn move_pinned_ref<T>(mut a: T, mut b: T) { unsafe { let p: Pin<&mut T> = Pin::new_unchecked(&mut a); // This should mean the pointee `a` can never move again. } mem::swap(&mut a, &mut b); // The address of `a` changed to `b`'s stack slot, so `a` got moved even // though we have previously pinned it! We have violated the pinning API contract. }Run
A value, once pinned, must remain pinned forever (unless its type implements Unpin
).
Similarily, calling Pin::new_unchecked
on an Rc<T>
is unsafe because there could be
aliases to the same data that are not subject to the pinning restrictions:
use std::rc::Rc; use std::pin::Pin; fn move_pinned_rc<T>(mut x: Rc<T>) { let pinned = unsafe { Pin::new_unchecked(x.clone()) }; { let p: Pin<&T> = pinned.as_ref(); // This should mean the pointee can never move again. } drop(pinned); let content = Rc::get_mut(&mut x).unwrap(); // Now, if `x` was the only reference, we have a mutable reference to // data that we pinned above, which we could use to move it as we have // seen in the previous example. We have violated the pinning API contract. }Run
ⓘImportant traits for Pin<P>pub fn as_ref(self: &Pin<P>) -> Pin<&P::Target>
[src]
Gets a pinned shared reference from this pinned pointer.
This is a generic method to go from &Pin<Pointer<T>>
to Pin<&T>
.
It is safe because, as part of the contract of Pin::new_unchecked
,
the pointee cannot move after Pin<Pointer<T>>
got created.
"Malicious" implementations of Pointer::Deref
are likewise
ruled out by the contract of Pin::new_unchecked
.
pub unsafe fn into_inner_unchecked(pin: Pin<P>) -> P
[src]
Unwraps this Pin<P>
returning the underlying pointer.
Safety
This function is unsafe. You must guarantee that you will continue to
treat the pointer P
as pinned after you call this function, so that
the invariants on the Pin
type can be upheld. If the code using the
resulting P
does not continue to maintain the pinning invariants that
is a violation of the API contract and may lead to undefined behavior in
later (safe) operations.
If the underlying data is Unpin
, Pin::into_inner
should be used
instead.
impl<P: DerefMut> Pin<P>
[src]
ⓘImportant traits for Pin<P>pub fn as_mut(self: &mut Pin<P>) -> Pin<&mut P::Target>
[src]
Gets a pinned mutable reference from this pinned pointer.
This is a generic method to go from &mut Pin<Pointer<T>>
to Pin<&mut T>
.
It is safe because, as part of the contract of Pin::new_unchecked
,
the pointee cannot move after Pin<Pointer<T>>
got created.
"Malicious" implementations of Pointer::DerefMut
are likewise
ruled out by the contract of Pin::new_unchecked
.
pub fn set(self: &mut Pin<P>, value: P::Target) where
P::Target: Sized,
[src]
P::Target: Sized,
Assigns a new value to the memory behind the pinned reference.
This overwrites pinned data, but that is okay: its destructor gets run before being overwritten, so no pinning guarantee is violated.
impl<'a, T: ?Sized> Pin<&'a T>
[src]
ⓘImportant traits for Pin<P>pub unsafe fn map_unchecked<U, F>(self: Pin<&'a T>, func: F) -> Pin<&'a U> where
F: FnOnce(&T) -> &U,
[src]
F: FnOnce(&T) -> &U,
Constructs a new pin by mapping the interior value.
For example, if you wanted to get a Pin
of a field of something,
you could use this to get access to that field in one line of code.
However, there are several gotchas with these "pinning projections";
see the pin
module documentation for further details on that topic.
Safety
This function is unsafe. You must guarantee that the data you return will not move so long as the argument value does not move (for example, because it is one of the fields of that value), and also that you do not move out of the argument you receive to the interior function.
pub fn get_ref(self: Pin<&'a T>) -> &'a T
[src]
Gets a shared reference out of a pin.
This is safe because it is not possible to move out of a shared reference.
It may seem like there is an issue here with interior mutability: in fact,
it is possible to move a T
out of a &RefCell<T>
. However, this is
not a problem as long as there does not also exist a Pin<&T>
pointing
to the same data, and RefCell<T>
does not let you create a pinned reference
to its contents. See the discussion on "pinning projections" for further
details.
Note: Pin
also implements Deref
to the target, which can be used
to access the inner value. However, Deref
only provides a reference
that lives for as long as the borrow of the Pin
, not the lifetime of
the Pin
itself. This method allows turning the Pin
into a reference
with the same lifetime as the original Pin
.
impl<'a, T: ?Sized> Pin<&'a mut T>
[src]
ⓘImportant traits for Pin<P>pub fn into_ref(self: Pin<&'a mut T>) -> Pin<&'a T>
[src]
Converts this Pin<&mut T>
into a Pin<&T>
with the same lifetime.
pub fn get_mut(self: Pin<&'a mut T>) -> &'a mut T where
T: Unpin,
[src]
T: Unpin,
Gets a mutable reference to the data inside of this Pin
.
This requires that the data inside this Pin
is Unpin
.
Note: Pin
also implements DerefMut
to the data, which can be used
to access the inner value. However, DerefMut
only provides a reference
that lives for as long as the borrow of the Pin
, not the lifetime of
the Pin
itself. This method allows turning the Pin
into a reference
with the same lifetime as the original Pin
.
pub unsafe fn get_unchecked_mut(self: Pin<&'a mut T>) -> &'a mut T
[src]
Gets a mutable reference to the data inside of this Pin
.
Safety
This function is unsafe. You must guarantee that you will never move
the data out of the mutable reference you receive when you call this
function, so that the invariants on the Pin
type can be upheld.
If the underlying data is Unpin
, Pin::get_mut
should be used
instead.
ⓘImportant traits for Pin<P>pub unsafe fn map_unchecked_mut<U, F>(
self: Pin<&'a mut T>,
func: F
) -> Pin<&'a mut U> where
F: FnOnce(&mut T) -> &mut U,
[src]
self: Pin<&'a mut T>,
func: F
) -> Pin<&'a mut U> where
F: FnOnce(&mut T) -> &mut U,
Construct a new pin by mapping the interior value.
For example, if you wanted to get a Pin
of a field of something,
you could use this to get access to that field in one line of code.
However, there are several gotchas with these "pinning projections";
see the pin
module documentation for further details on that topic.
Safety
This function is unsafe. You must guarantee that the data you return will not move so long as the argument value does not move (for example, because it is one of the fields of that value), and also that you do not move out of the argument you receive to the interior function.
Trait Implementations
impl<P: Copy> Copy for Pin<P>
[src]
impl<P: Deref> Deref for Pin<P>
[src]
impl<P: DerefMut> DerefMut for Pin<P> where
P::Target: Unpin,
[src]
P::Target: Unpin,
impl<'_, G: ?Sized + Generator> Generator for Pin<&'_ mut G>
[src]
type Yield = G::Yield
The type of value this generator yields. Read more
type Return = G::Return
The type of value this generator returns. Read more
fn resume(self: Pin<&mut Self>) -> GeneratorState<Self::Yield, Self::Return>
[src]
impl<P, U> CoerceUnsized<Pin<U>> for Pin<P> where
P: CoerceUnsized<U>,
[src]
P: CoerceUnsized<U>,
impl<'a, P, U> DispatchFromDyn<Pin<U>> for Pin<P> where
P: DispatchFromDyn<U>,
[src]
P: DispatchFromDyn<U>,
impl<P, Q> PartialEq<Pin<Q>> for Pin<P> where
P: PartialEq<Q>,
1.34.0[src]
P: PartialEq<Q>,
impl<P: Eq> Eq for Pin<P>
[src]
impl<P: Ord> Ord for Pin<P>
[src]
fn cmp(&self, other: &Pin<P>) -> Ordering
[src]
fn max(self, other: Self) -> Self where
Self: Sized,
1.21.0[src]
Self: Sized,
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self where
Self: Sized,
1.21.0[src]
Self: Sized,
Compares and returns the minimum of two values. Read more
fn clamp(self, min: Self, max: Self) -> Self where
Self: Sized,
[src]
Self: Sized,
Restrict a value to a certain interval. Read more
impl<P, Q> PartialOrd<Pin<Q>> for Pin<P> where
P: PartialOrd<Q>,
1.34.0[src]
P: PartialOrd<Q>,
fn partial_cmp(&self, other: &Pin<Q>) -> Option<Ordering>
[src]
fn lt(&self, other: &Pin<Q>) -> bool
[src]
fn le(&self, other: &Pin<Q>) -> bool
[src]
fn gt(&self, other: &Pin<Q>) -> bool
[src]
fn ge(&self, other: &Pin<Q>) -> bool
[src]
impl<P: Clone> Clone for Pin<P>
[src]
ⓘImportant traits for Pin<P>fn clone(&self) -> Pin<P>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<P: Hash> Hash for Pin<P>
[src]
fn hash<__HP: Hasher>(&self, state: &mut __HP)
[src]
fn hash_slice<H: Hasher>(data: &[Self], state: &mut H) where
Self: Sized,
1.3.0[src]
Self: Sized,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<P: Debug> Debug for Pin<P>
[src]
impl<P: Display> Display for Pin<P>
[src]
impl<P: Pointer> Pointer for Pin<P>
[src]
impl<P> Future for Pin<P> where
P: Unpin + DerefMut,
P::Target: Future,
1.36.0[src]
P: Unpin + DerefMut,
P::Target: Future,
Auto Trait Implementations
Blanket Implementations
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(Self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut Self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,