Files
alloc
core
char
fmt
future
hash
iter
mem
num
ops
prelude
ptr
slice
stdsimd
str
sync
task
unicode
proc_macro
std
test
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
//! Rust adaptation of the Grisu3 algorithm described in "Printing Floating-Point Numbers Quickly
//! and Accurately with Integers"[^1]. It uses about 1KB of precomputed table, and in turn, it's
//! very quick for most inputs.
//!
//! [^1]: Florian Loitsch. 2010. Printing floating-point numbers quickly and
//!   accurately with integers. SIGPLAN Not. 45, 6 (June 2010), 233-243.

use crate::num::diy_float::Fp;
use crate::num::flt2dec::{Decoded, MAX_SIG_DIGITS, round_up};


// see the comments in `format_shortest_opt` for the rationale.
#[doc(hidden)] pub const ALPHA: i16 = -60;
#[doc(hidden)] pub const GAMMA: i16 = -32;

/*
# the following Python code generates this table:
for i in xrange(-308, 333, 8):
    if i >= 0: f = 10**i; e = 0
    else: f = 2**(80-4*i) // 10**-i; e = 4 * i - 80
    l = f.bit_length()
    f = ((f << 64 >> (l-1)) + 1) >> 1; e += l - 64
    print '    (%#018x, %5d, %4d),' % (f, e, i)
*/

#[doc(hidden)]
pub static CACHED_POW10: [(u64, i16, i16); 81] = [ // (f, e, k)
    (0xe61acf033d1a45df, -1087, -308),
    (0xab70fe17c79ac6ca, -1060, -300),
    (0xff77b1fcbebcdc4f, -1034, -292),
    (0xbe5691ef416bd60c, -1007, -284),
    (0x8dd01fad907ffc3c,  -980, -276),
    (0xd3515c2831559a83,  -954, -268),
    (0x9d71ac8fada6c9b5,  -927, -260),
    (0xea9c227723ee8bcb,  -901, -252),
    (0xaecc49914078536d,  -874, -244),
    (0x823c12795db6ce57,  -847, -236),
    (0xc21094364dfb5637,  -821, -228),
    (0x9096ea6f3848984f,  -794, -220),
    (0xd77485cb25823ac7,  -768, -212),
    (0xa086cfcd97bf97f4,  -741, -204),
    (0xef340a98172aace5,  -715, -196),
    (0xb23867fb2a35b28e,  -688, -188),
    (0x84c8d4dfd2c63f3b,  -661, -180),
    (0xc5dd44271ad3cdba,  -635, -172),
    (0x936b9fcebb25c996,  -608, -164),
    (0xdbac6c247d62a584,  -582, -156),
    (0xa3ab66580d5fdaf6,  -555, -148),
    (0xf3e2f893dec3f126,  -529, -140),
    (0xb5b5ada8aaff80b8,  -502, -132),
    (0x87625f056c7c4a8b,  -475, -124),
    (0xc9bcff6034c13053,  -449, -116),
    (0x964e858c91ba2655,  -422, -108),
    (0xdff9772470297ebd,  -396, -100),
    (0xa6dfbd9fb8e5b88f,  -369,  -92),
    (0xf8a95fcf88747d94,  -343,  -84),
    (0xb94470938fa89bcf,  -316,  -76),
    (0x8a08f0f8bf0f156b,  -289,  -68),
    (0xcdb02555653131b6,  -263,  -60),
    (0x993fe2c6d07b7fac,  -236,  -52),
    (0xe45c10c42a2b3b06,  -210,  -44),
    (0xaa242499697392d3,  -183,  -36),
    (0xfd87b5f28300ca0e,  -157,  -28),
    (0xbce5086492111aeb,  -130,  -20),
    (0x8cbccc096f5088cc,  -103,  -12),
    (0xd1b71758e219652c,   -77,   -4),
    (0x9c40000000000000,   -50,    4),
    (0xe8d4a51000000000,   -24,   12),
    (0xad78ebc5ac620000,     3,   20),
    (0x813f3978f8940984,    30,   28),
    (0xc097ce7bc90715b3,    56,   36),
    (0x8f7e32ce7bea5c70,    83,   44),
    (0xd5d238a4abe98068,   109,   52),
    (0x9f4f2726179a2245,   136,   60),
    (0xed63a231d4c4fb27,   162,   68),
    (0xb0de65388cc8ada8,   189,   76),
    (0x83c7088e1aab65db,   216,   84),
    (0xc45d1df942711d9a,   242,   92),
    (0x924d692ca61be758,   269,  100),
    (0xda01ee641a708dea,   295,  108),
    (0xa26da3999aef774a,   322,  116),
    (0xf209787bb47d6b85,   348,  124),
    (0xb454e4a179dd1877,   375,  132),
    (0x865b86925b9bc5c2,   402,  140),
    (0xc83553c5c8965d3d,   428,  148),
    (0x952ab45cfa97a0b3,   455,  156),
    (0xde469fbd99a05fe3,   481,  164),
    (0xa59bc234db398c25,   508,  172),
    (0xf6c69a72a3989f5c,   534,  180),
    (0xb7dcbf5354e9bece,   561,  188),
    (0x88fcf317f22241e2,   588,  196),
    (0xcc20ce9bd35c78a5,   614,  204),
    (0x98165af37b2153df,   641,  212),
    (0xe2a0b5dc971f303a,   667,  220),
    (0xa8d9d1535ce3b396,   694,  228),
    (0xfb9b7cd9a4a7443c,   720,  236),
    (0xbb764c4ca7a44410,   747,  244),
    (0x8bab8eefb6409c1a,   774,  252),
    (0xd01fef10a657842c,   800,  260),
    (0x9b10a4e5e9913129,   827,  268),
    (0xe7109bfba19c0c9d,   853,  276),
    (0xac2820d9623bf429,   880,  284),
    (0x80444b5e7aa7cf85,   907,  292),
    (0xbf21e44003acdd2d,   933,  300),
    (0x8e679c2f5e44ff8f,   960,  308),
    (0xd433179d9c8cb841,   986,  316),
    (0x9e19db92b4e31ba9,  1013,  324),
    (0xeb96bf6ebadf77d9,  1039,  332),
];

#[doc(hidden)] pub const CACHED_POW10_FIRST_E: i16 = -1087;
#[doc(hidden)] pub const CACHED_POW10_LAST_E: i16 = 1039;

#[doc(hidden)]
pub fn cached_power(alpha: i16, gamma: i16) -> (i16, Fp) {
    let offset = CACHED_POW10_FIRST_E as i32;
    let range = (CACHED_POW10.len() as i32) - 1;
    let domain = (CACHED_POW10_LAST_E - CACHED_POW10_FIRST_E) as i32;
    let idx = ((gamma as i32) - offset) * range / domain;
    let (f, e, k) = CACHED_POW10[idx as usize];
    debug_assert!(alpha <= e && e <= gamma);
    (k, Fp { f, e })
}

/// Given `x > 0`, returns `(k, 10^k)` such that `10^k <= x < 10^(k+1)`.
#[doc(hidden)]
pub fn max_pow10_no_more_than(x: u32) -> (u8, u32) {
    debug_assert!(x > 0);

    const X9: u32 = 10_0000_0000;
    const X8: u32 =  1_0000_0000;
    const X7: u32 =    1000_0000;
    const X6: u32 =     100_0000;
    const X5: u32 =      10_0000;
    const X4: u32 =       1_0000;
    const X3: u32 =         1000;
    const X2: u32 =          100;
    const X1: u32 =           10;

    if x < X4 {
        if x < X2 { if x < X1 {(0,  1)} else {(1, X1)} }
        else      { if x < X3 {(2, X2)} else {(3, X3)} }
    } else {
        if x < X6      { if x < X5 {(4, X4)} else {(5, X5)} }
        else if x < X8 { if x < X7 {(6, X6)} else {(7, X7)} }
        else           { if x < X9 {(8, X8)} else {(9, X9)} }
    }
}

/// The shortest mode implementation for Grisu.
///
/// It returns `None` when it would return an inexact representation otherwise.
pub fn format_shortest_opt(d: &Decoded,
                           buf: &mut [u8]) -> Option<(/*#digits*/ usize, /*exp*/ i16)> {
    assert!(d.mant > 0);
    assert!(d.minus > 0);
    assert!(d.plus > 0);
    assert!(d.mant.checked_add(d.plus).is_some());
    assert!(d.mant.checked_sub(d.minus).is_some());
    assert!(buf.len() >= MAX_SIG_DIGITS);
    assert!(d.mant + d.plus < (1 << 61)); // we need at least three bits of additional precision

    // start with the normalized values with the shared exponent
    let plus = Fp { f: d.mant + d.plus, e: d.exp }.normalize();
    let minus = Fp { f: d.mant - d.minus, e: d.exp }.normalize_to(plus.e);
    let v = Fp { f: d.mant, e: d.exp }.normalize_to(plus.e);

    // find any `cached = 10^minusk` such that `ALPHA <= minusk + plus.e + 64 <= GAMMA`.
    // since `plus` is normalized, this means `2^(62 + ALPHA) <= plus * cached < 2^(64 + GAMMA)`;
    // given our choices of `ALPHA` and `GAMMA`, this puts `plus * cached` into `[4, 2^32)`.
    //
    // it is obviously desirable to maximize `GAMMA - ALPHA`,
    // so that we don't need many cached powers of 10, but there are some considerations:
    //
    // 1. we want to keep `floor(plus * cached)` within `u32` since it needs a costly division.
    //    (this is not really avoidable, remainder is required for accuracy estimation.)
    // 2. the remainder of `floor(plus * cached)` repeatedly gets multiplied by 10,
    //    and it should not overflow.
    //
    // the first gives `64 + GAMMA <= 32`, while the second gives `10 * 2^-ALPHA <= 2^64`;
    // -60 and -32 is the maximal range with this constraint, and V8 also uses them.
    let (minusk, cached) = cached_power(ALPHA - plus.e - 64, GAMMA - plus.e - 64);

    // scale fps. this gives the maximal error of 1 ulp (proved from Theorem 5.1).
    let plus = plus.mul(&cached);
    let minus = minus.mul(&cached);
    let v = v.mul(&cached);
    debug_assert_eq!(plus.e, minus.e);
    debug_assert_eq!(plus.e, v.e);

    //         +- actual range of minus
    //   | <---|---------------------- unsafe region --------------------------> |
    //   |     |                                                                 |
    //   |  |<--->|  | <--------------- safe region ---------------> |           |
    //   |  |     |  |                                               |           |
    //   |1 ulp|1 ulp|                 |1 ulp|1 ulp|                 |1 ulp|1 ulp|
    //   |<--->|<--->|                 |<--->|<--->|                 |<--->|<--->|
    //   |-----|-----|-------...-------|-----|-----|-------...-------|-----|-----|
    //   |   minus   |                 |     v     |                 |   plus    |
    // minus1     minus0           v - 1 ulp   v + 1 ulp           plus0       plus1
    //
    // above `minus`, `v` and `plus` are *quantized* approximations (error < 1 ulp).
    // as we don't know the error is positive or negative, we use two approximations spaced equally
    // and have the maximal error of 2 ulps.
    //
    // the "unsafe region" is a liberal interval which we initially generate.
    // the "safe region" is a conservative interval which we only accept.
    // we start with the correct repr within the unsafe region, and try to find the closest repr
    // to `v` which is also within the safe region. if we can't, we give up.
    let plus1 = plus.f + 1;
//  let plus0 = plus.f - 1; // only for explanation
//  let minus0 = minus.f + 1; // only for explanation
    let minus1 = minus.f - 1;
    let e = -plus.e as usize; // shared exponent

    // divide `plus1` into integral and fractional parts.
    // integral parts are guaranteed to fit in u32, since cached power guarantees `plus < 2^32`
    // and normalized `plus.f` is always less than `2^64 - 2^4` due to the precision requirement.
    let plus1int = (plus1 >> e) as u32;
    let plus1frac = plus1 & ((1 << e) - 1);

    // calculate the largest `10^max_kappa` no more than `plus1` (thus `plus1 < 10^(max_kappa+1)`).
    // this is an upper bound of `kappa` below.
    let (max_kappa, max_ten_kappa) = max_pow10_no_more_than(plus1int);

    let mut i = 0;
    let exp = max_kappa as i16 - minusk + 1;

    // Theorem 6.2: if `k` is the greatest integer s.t. `0 <= y mod 10^k <= y - x`,
    //              then `V = floor(y / 10^k) * 10^k` is in `[x, y]` and one of the shortest
    //              representations (with the minimal number of significant digits) in that range.
    //
    // find the digit length `kappa` between `(minus1, plus1)` as per Theorem 6.2.
    // Theorem 6.2 can be adopted to exclude `x` by requiring `y mod 10^k < y - x` instead.
    // (e.g., `x` = 32000, `y` = 32777; `kappa` = 2 since `y mod 10^3 = 777 < y - x = 777`.)
    // the algorithm relies on the later verification phase to exclude `y`.
    let delta1 = plus1 - minus1;
//  let delta1int = (delta1 >> e) as usize; // only for explanation
    let delta1frac = delta1 & ((1 << e) - 1);

    // render integral parts, while checking for the accuracy at each step.
    let mut kappa = max_kappa as i16;
    let mut ten_kappa = max_ten_kappa; // 10^kappa
    let mut remainder = plus1int; // digits yet to be rendered
    loop { // we always have at least one digit to render, as `plus1 >= 10^kappa`
        // invariants:
        // - `delta1int <= remainder < 10^(kappa+1)`
        // - `plus1int = d[0..n-1] * 10^(kappa+1) + remainder`
        //   (it follows that `remainder = plus1int % 10^(kappa+1)`)

        // divide `remainder` by `10^kappa`. both are scaled by `2^-e`.
        let q = remainder / ten_kappa;
        let r = remainder % ten_kappa;
        debug_assert!(q < 10);
        buf[i] = b'0' + q as u8;
        i += 1;

        let plus1rem = ((r as u64) << e) + plus1frac; // == (plus1 % 10^kappa) * 2^e
        if plus1rem < delta1 {
            // `plus1 % 10^kappa < delta1 = plus1 - minus1`; we've found the correct `kappa`.
            let ten_kappa = (ten_kappa as u64) << e; // scale 10^kappa back to the shared exponent
            return round_and_weed(&mut buf[..i], exp, plus1rem, delta1, plus1 - v.f, ten_kappa, 1);
        }

        // break the loop when we have rendered all integral digits.
        // the exact number of digits is `max_kappa + 1` as `plus1 < 10^(max_kappa+1)`.
        if i > max_kappa as usize {
            debug_assert_eq!(ten_kappa, 1);
            debug_assert_eq!(kappa, 0);
            break;
        }

        // restore invariants
        kappa -= 1;
        ten_kappa /= 10;
        remainder = r;
    }

    // render fractional parts, while checking for the accuracy at each step.
    // this time we rely on repeated multiplications, as division will lose the precision.
    let mut remainder = plus1frac;
    let mut threshold = delta1frac;
    let mut ulp = 1;
    loop { // the next digit should be significant as we've tested that before breaking out
        // invariants, where `m = max_kappa + 1` (# of digits in the integral part):
        // - `remainder < 2^e`
        // - `plus1frac * 10^(n-m) = d[m..n-1] * 2^e + remainder`

        remainder *= 10; // won't overflow, `2^e * 10 < 2^64`
        threshold *= 10;
        ulp *= 10;

        // divide `remainder` by `10^kappa`.
        // both are scaled by `2^e / 10^kappa`, so the latter is implicit here.
        let q = remainder >> e;
        let r = remainder & ((1 << e) - 1);
        debug_assert!(q < 10);
        buf[i] = b'0' + q as u8;
        i += 1;

        if r < threshold {
            let ten_kappa = 1 << e; // implicit divisor
            return round_and_weed(&mut buf[..i], exp, r, threshold,
                                  (plus1 - v.f) * ulp, ten_kappa, ulp);
        }

        // restore invariants
        kappa -= 1;
        remainder = r;
    }

    // we've generated all significant digits of `plus1`, but not sure if it's the optimal one.
    // for example, if `minus1` is 3.14153... and `plus1` is 3.14158..., there are 5 different
    // shortest representation from 3.14154 to 3.14158 but we only have the greatest one.
    // we have to successively decrease the last digit and check if this is the optimal repr.
    // there are at most 9 candidates (..1 to ..9), so this is fairly quick. ("rounding" phase)
    //
    // the function checks if this "optimal" repr is actually within the ulp ranges,
    // and also, it is possible that the "second-to-optimal" repr can actually be optimal
    // due to the rounding error. in either cases this returns `None`. ("weeding" phase)
    //
    // all arguments here are scaled by the common (but implicit) value `k`, so that:
    // - `remainder = (plus1 % 10^kappa) * k`
    // - `threshold = (plus1 - minus1) * k` (and also, `remainder < threshold`)
    // - `plus1v = (plus1 - v) * k` (and also, `threshold > plus1v` from prior invariants)
    // - `ten_kappa = 10^kappa * k`
    // - `ulp = 2^-e * k`
    fn round_and_weed(buf: &mut [u8], exp: i16, remainder: u64, threshold: u64, plus1v: u64,
                      ten_kappa: u64, ulp: u64) -> Option<(usize, i16)> {
        assert!(!buf.is_empty());

        // produce two approximations to `v` (actually `plus1 - v`) within 1.5 ulps.
        // the resulting representation should be the closest representation to both.
        //
        // here `plus1 - v` is used since calculations are done with respect to `plus1`
        // in order to avoid overflow/underflow (hence the seemingly swapped names).
        let plus1v_down = plus1v + ulp; // plus1 - (v - 1 ulp)
        let plus1v_up = plus1v - ulp; // plus1 - (v + 1 ulp)

        // decrease the last digit and stop at the closest representation to `v + 1 ulp`.
        let mut plus1w = remainder; // plus1w(n) = plus1 - w(n)
        {
            let last = buf.last_mut().unwrap();

            // we work with the approximated digits `w(n)`, which is initially equal to `plus1 -
            // plus1 % 10^kappa`. after running the loop body `n` times, `w(n) = plus1 -
            // plus1 % 10^kappa - n * 10^kappa`. we set `plus1w(n) = plus1 - w(n) =
            // plus1 % 10^kappa + n * 10^kappa` (thus `remainder = plus1w(0)`) to simplify checks.
            // note that `plus1w(n)` is always increasing.
            //
            // we have three conditions to terminate. any of them will make the loop unable to
            // proceed, but we then have at least one valid representation known to be closest to
            // `v + 1 ulp` anyway. we will denote them as TC1 through TC3 for brevity.
            //
            // TC1: `w(n) <= v + 1 ulp`, i.e., this is the last repr that can be the closest one.
            // this is equivalent to `plus1 - w(n) = plus1w(n) >= plus1 - (v + 1 ulp) = plus1v_up`.
            // combined with TC2 (which checks if `w(n+1)` is valid), this prevents the possible
            // overflow on the calculation of `plus1w(n)`.
            //
            // TC2: `w(n+1) < minus1`, i.e., the next repr definitely does not round to `v`.
            // this is equivalent to `plus1 - w(n) + 10^kappa = plus1w(n) + 10^kappa >
            // plus1 - minus1 = threshold`. the left hand side can overflow, but we know
            // `threshold > plus1v`, so if TC1 is false, `threshold - plus1w(n) >
            // threshold - (plus1v - 1 ulp) > 1 ulp` and we can safely test if
            // `threshold - plus1w(n) < 10^kappa` instead.
            //
            // TC3: `abs(w(n) - (v + 1 ulp)) <= abs(w(n+1) - (v + 1 ulp))`, i.e., the next repr is
            // no closer to `v + 1 ulp` than the current repr. given `z(n) = plus1v_up - plus1w(n)`,
            // this becomes `abs(z(n)) <= abs(z(n+1))`. again assuming that TC1 is false, we have
            // `z(n) > 0`. we have two cases to consider:
            //
            // - when `z(n+1) >= 0`: TC3 becomes `z(n) <= z(n+1)`. as `plus1w(n)` is increasing,
            //   `z(n)` should be decreasing and this is clearly false.
            // - when `z(n+1) < 0`:
            //   - TC3a: the precondition is `plus1v_up < plus1w(n) + 10^kappa`. assuming TC2 is
            //     false, `threshold >= plus1w(n) + 10^kappa` so it cannot overflow.
            //   - TC3b: TC3 becomes `z(n) <= -z(n+1)`, i.e., `plus1v_up - plus1w(n) >=
            //     plus1w(n+1) - plus1v_up = plus1w(n) + 10^kappa - plus1v_up`. the negated TC1
            //     gives `plus1v_up > plus1w(n)`, so it cannot overflow or underflow when
            //     combined with TC3a.
            //
            // consequently, we should stop when `TC1 || TC2 || (TC3a && TC3b)`. the following is
            // equal to its inverse, `!TC1 && !TC2 && (!TC3a || !TC3b)`.
            while plus1w < plus1v_up &&
                  threshold - plus1w >= ten_kappa &&
                  (plus1w + ten_kappa < plus1v_up ||
                   plus1v_up - plus1w >= plus1w + ten_kappa - plus1v_up) {
                *last -= 1;
                debug_assert!(*last > b'0'); // the shortest repr cannot end with `0`
                plus1w += ten_kappa;
            }
        }

        // check if this representation is also the closest representation to `v - 1 ulp`.
        //
        // this is simply same to the terminating conditions for `v + 1 ulp`, with all `plus1v_up`
        // replaced by `plus1v_down` instead. overflow analysis equally holds.
        if plus1w < plus1v_down &&
           threshold - plus1w >= ten_kappa &&
           (plus1w + ten_kappa < plus1v_down ||
            plus1v_down - plus1w >= plus1w + ten_kappa - plus1v_down) {
            return None;
        }

        // now we have the closest representation to `v` between `plus1` and `minus1`.
        // this is too liberal, though, so we reject any `w(n)` not between `plus0` and `minus0`,
        // i.e., `plus1 - plus1w(n) <= minus0` or `plus1 - plus1w(n) >= plus0`. we utilize the facts
        // that `threshold = plus1 - minus1` and `plus1 - plus0 = minus0 - minus1 = 2 ulp`.
        if 2 * ulp <= plus1w && plus1w <= threshold - 4 * ulp {
            Some((buf.len(), exp))
        } else {
            None
        }
    }
}

/// The shortest mode implementation for Grisu with Dragon fallback.
///
/// This should be used for most cases.
pub fn format_shortest(d: &Decoded, buf: &mut [u8]) -> (/*#digits*/ usize, /*exp*/ i16) {
    use crate::num::flt2dec::strategy::dragon::format_shortest as fallback;
    match format_shortest_opt(d, buf) {
        Some(ret) => ret,
        None => fallback(d, buf),
    }
}

/// The exact and fixed mode implementation for Grisu.
///
/// It returns `None` when it would return an inexact representation otherwise.
pub fn format_exact_opt(d: &Decoded, buf: &mut [u8], limit: i16)
                                -> Option<(/*#digits*/ usize, /*exp*/ i16)> {
    assert!(d.mant > 0);
    assert!(d.mant < (1 << 61)); // we need at least three bits of additional precision
    assert!(!buf.is_empty());

    // normalize and scale `v`.
    let v = Fp { f: d.mant, e: d.exp }.normalize();
    let (minusk, cached) = cached_power(ALPHA - v.e - 64, GAMMA - v.e - 64);
    let v = v.mul(&cached);

    // divide `v` into integral and fractional parts.
    let e = -v.e as usize;
    let vint = (v.f >> e) as u32;
    let vfrac = v.f & ((1 << e) - 1);

    // both old `v` and new `v` (scaled by `10^-k`) has an error of < 1 ulp (Theorem 5.1).
    // as we don't know the error is positive or negative, we use two approximations
    // spaced equally and have the maximal error of 2 ulps (same to the shortest case).
    //
    // the goal is to find the exactly rounded series of digits that are common to
    // both `v - 1 ulp` and `v + 1 ulp`, so that we are maximally confident.
    // if this is not possible, we don't know which one is the correct output for `v`,
    // so we give up and fall back.
    //
    // `err` is defined as `1 ulp * 2^e` here (same to the ulp in `vfrac`),
    // and we will scale it whenever `v` gets scaled.
    let mut err = 1;

    // calculate the largest `10^max_kappa` no more than `v` (thus `v < 10^(max_kappa+1)`).
    // this is an upper bound of `kappa` below.
    let (max_kappa, max_ten_kappa) = max_pow10_no_more_than(vint);

    let mut i = 0;
    let exp = max_kappa as i16 - minusk + 1;

    // if we are working with the last-digit limitation, we need to shorten the buffer
    // before the actual rendering in order to avoid double rounding.
    // note that we have to enlarge the buffer again when rounding up happens!
    let len = if exp <= limit {
        // oops, we cannot even produce *one* digit.
        // this is possible when, say, we've got something like 9.5 and it's being rounded to 10.
        //
        // in principle we can immediately call `possibly_round` with an empty buffer,
        // but scaling `max_ten_kappa << e` by 10 can result in overflow.
        // thus we are being sloppy here and widen the error range by a factor of 10.
        // this will increase the false negative rate, but only very, *very* slightly;
        // it can only matter noticeably when the mantissa is bigger than 60 bits.
        return possibly_round(buf, 0, exp, limit, v.f / 10, (max_ten_kappa as u64) << e, err << e);
    } else if ((exp as i32 - limit as i32) as usize) < buf.len() {
        (exp - limit) as usize
    } else {
        buf.len()
    };
    debug_assert!(len > 0);

    // render integral parts.
    // the error is entirely fractional, so we don't need to check it in this part.
    let mut kappa = max_kappa as i16;
    let mut ten_kappa = max_ten_kappa; // 10^kappa
    let mut remainder = vint; // digits yet to be rendered
    loop { // we always have at least one digit to render
        // invariants:
        // - `remainder < 10^(kappa+1)`
        // - `vint = d[0..n-1] * 10^(kappa+1) + remainder`
        //   (it follows that `remainder = vint % 10^(kappa+1)`)

        // divide `remainder` by `10^kappa`. both are scaled by `2^-e`.
        let q = remainder / ten_kappa;
        let r = remainder % ten_kappa;
        debug_assert!(q < 10);
        buf[i] = b'0' + q as u8;
        i += 1;

        // is the buffer full? run the rounding pass with the remainder.
        if i == len {
            let vrem = ((r as u64) << e) + vfrac; // == (v % 10^kappa) * 2^e
            return possibly_round(buf, len, exp, limit, vrem, (ten_kappa as u64) << e, err << e);
        }

        // break the loop when we have rendered all integral digits.
        // the exact number of digits is `max_kappa + 1` as `plus1 < 10^(max_kappa+1)`.
        if i > max_kappa as usize {
            debug_assert_eq!(ten_kappa, 1);
            debug_assert_eq!(kappa, 0);
            break;
        }

        // restore invariants
        kappa -= 1;
        ten_kappa /= 10;
        remainder = r;
    }

    // render fractional parts.
    //
    // in principle we can continue to the last available digit and check for the accuracy.
    // unfortunately we are working with the finite-sized integers, so we need some criterion
    // to detect the overflow. V8 uses `remainder > err`, which becomes false when
    // the first `i` significant digits of `v - 1 ulp` and `v` differ. however this rejects
    // too many otherwise valid input.
    //
    // since the later phase has a correct overflow detection, we instead use tighter criterion:
    // we continue til `err` exceeds `10^kappa / 2`, so that the range between `v - 1 ulp` and
    // `v + 1 ulp` definitely contains two or more rounded representations. this is same to
    // the first two comparisons from `possibly_round`, for the reference.
    let mut remainder = vfrac;
    let maxerr = 1 << (e - 1);
    while err < maxerr {
        // invariants, where `m = max_kappa + 1` (# of digits in the integral part):
        // - `remainder < 2^e`
        // - `vfrac * 10^(n-m) = d[m..n-1] * 2^e + remainder`
        // - `err = 10^(n-m)`

        remainder *= 10; // won't overflow, `2^e * 10 < 2^64`
        err *= 10; // won't overflow, `err * 10 < 2^e * 5 < 2^64`

        // divide `remainder` by `10^kappa`.
        // both are scaled by `2^e / 10^kappa`, so the latter is implicit here.
        let q = remainder >> e;
        let r = remainder & ((1 << e) - 1);
        debug_assert!(q < 10);
        buf[i] = b'0' + q as u8;
        i += 1;

        // is the buffer full? run the rounding pass with the remainder.
        if i == len {
            return possibly_round(buf, len, exp, limit, r, 1 << e, err);
        }

        // restore invariants
        remainder = r;
    }

    // further calculation is useless (`possibly_round` definitely fails), so we give up.
    return None;

    // we've generated all requested digits of `v`, which should be also same to corresponding
    // digits of `v - 1 ulp`. now we check if there is a unique representation shared by
    // both `v - 1 ulp` and `v + 1 ulp`; this can be either same to generated digits, or
    // to the rounded-up version of those digits. if the range contains multiple representations
    // of the same length, we cannot be sure and should return `None` instead.
    //
    // all arguments here are scaled by the common (but implicit) value `k`, so that:
    // - `remainder = (v % 10^kappa) * k`
    // - `ten_kappa = 10^kappa * k`
    // - `ulp = 2^-e * k`
    fn possibly_round(buf: &mut [u8], mut len: usize, mut exp: i16, limit: i16,
                      remainder: u64, ten_kappa: u64, ulp: u64) -> Option<(usize, i16)> {
        debug_assert!(remainder < ten_kappa);

        //           10^kappa
        //    :   :   :<->:   :
        //    :   :   :   :   :
        //    :|1 ulp|1 ulp|  :
        //    :|<--->|<--->|  :
        // ----|-----|-----|----
        //     |     v     |
        // v - 1 ulp   v + 1 ulp
        //
        // (for the reference, the dotted line indicates the exact value for
        // possible representations in given number of digits.)
        //
        // error is too large that there are at least three possible representations
        // between `v - 1 ulp` and `v + 1 ulp`. we cannot determine which one is correct.
        if ulp >= ten_kappa { return None; }

        //    10^kappa
        //   :<------->:
        //   :         :
        //   : |1 ulp|1 ulp|
        //   : |<--->|<--->|
        // ----|-----|-----|----
        //     |     v     |
        // v - 1 ulp   v + 1 ulp
        //
        // in fact, 1/2 ulp is enough to introduce two possible representations.
        // (remember that we need a unique representation for both `v - 1 ulp` and `v + 1 ulp`.)
        // this won't overflow, as `ulp < ten_kappa` from the first check.
        if ten_kappa - ulp <= ulp { return None; }

        //     remainder
        //       :<->|                           :
        //       :   |                           :
        //       :<--------- 10^kappa ---------->:
        //     | :   |                           :
        //     |1 ulp|1 ulp|                     :
        //     |<--->|<--->|                     :
        // ----|-----|-----|------------------------
        //     |     v     |
        // v - 1 ulp   v + 1 ulp
        //
        // if `v + 1 ulp` is closer to the rounded-down representation (which is already in `buf`),
        // then we can safely return. note that `v - 1 ulp` *can* be less than the current
        // representation, but as `1 ulp < 10^kappa / 2`, this condition is enough:
        // the distance between `v - 1 ulp` and the current representation
        // cannot exceed `10^kappa / 2`.
        //
        // the condition equals to `remainder + ulp < 10^kappa / 2`.
        // since this can easily overflow, first check if `remainder < 10^kappa / 2`.
        // we've already verified that `ulp < 10^kappa / 2`, so as long as
        // `10^kappa` did not overflow after all, the second check is fine.
        if ten_kappa - remainder > remainder && ten_kappa - 2 * remainder >= 2 * ulp {
            return Some((len, exp));
        }

        //   :<------- remainder ------>|   :
        //   :                          |   :
        //   :<--------- 10^kappa --------->:
        //   :                    |     |   : |
        //   :                    |1 ulp|1 ulp|
        //   :                    |<--->|<--->|
        // -----------------------|-----|-----|-----
        //                        |     v     |
        //                    v - 1 ulp   v + 1 ulp
        //
        // on the other hands, if `v - 1 ulp` is closer to the rounded-up representation,
        // we should round up and return. for the same reason we don't need to check `v + 1 ulp`.
        //
        // the condition equals to `remainder - ulp >= 10^kappa / 2`.
        // again we first check if `remainder > ulp` (note that this is not `remainder >= ulp`,
        // as `10^kappa` is never zero). also note that `remainder - ulp <= 10^kappa`,
        // so the second check does not overflow.
        if remainder > ulp && ten_kappa - (remainder - ulp) <= remainder - ulp {
            if let Some(c) = round_up(buf, len) {
                // only add an additional digit when we've been requested the fixed precision.
                // we also need to check that, if the original buffer was empty,
                // the additional digit can only be added when `exp == limit` (edge case).
                exp += 1;
                if exp > limit && len < buf.len() {
                    buf[len] = c;
                    len += 1;
                }
            }
            return Some((len, exp));
        }

        // otherwise we are doomed (i.e., some values between `v - 1 ulp` and `v + 1 ulp` are
        // rounding down and others are rounding up) and give up.
        None
    }
}

/// The exact and fixed mode implementation for Grisu with Dragon fallback.
///
/// This should be used for most cases.
pub fn format_exact(d: &Decoded, buf: &mut [u8], limit: i16) -> (/*#digits*/ usize, /*exp*/ i16) {
    use crate::num::flt2dec::strategy::dragon::format_exact as fallback;
    match format_exact_opt(d, buf, limit) {
        Some(ret) => ret,
        None => fallback(d, buf, limit),
    }
}