Files
alloc
core
char
fmt
future
hash
iter
mem
num
ops
prelude
ptr
slice
stdsimd
str
sync
task
unicode
proc_macro
std
test
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#![unstable(reason = "not public", issue = "0", feature = "fd")]

use crate::cmp;
use crate::io::{self, Read, Initializer, IoSlice, IoSliceMut};
use crate::mem;
use crate::sync::atomic::{AtomicBool, Ordering};
use crate::sys::cvt;
use crate::sys_common::AsInner;

use libc::{c_int, c_void, ssize_t};

#[derive(Debug)]
pub struct FileDesc {
    fd: c_int,
}

fn max_len() -> usize {
    // The maximum read limit on most posix-like systems is `SSIZE_MAX`,
    // with the man page quoting that if the count of bytes to read is
    // greater than `SSIZE_MAX` the result is "unspecified".
    //
    // On macOS, however, apparently the 64-bit libc is either buggy or
    // intentionally showing odd behavior by rejecting any read with a size
    // larger than or equal to INT_MAX. To handle both of these the read
    // size is capped on both platforms.
    if cfg!(target_os = "macos") {
        <c_int>::max_value() as usize - 1
    } else {
        <ssize_t>::max_value() as usize
    }
}

impl FileDesc {
    pub fn new(fd: c_int) -> FileDesc {
        FileDesc { fd }
    }

    pub fn raw(&self) -> c_int { self.fd }

    /// Extracts the actual file descriptor without closing it.
    pub fn into_raw(self) -> c_int {
        let fd = self.fd;
        mem::forget(self);
        fd
    }

    pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
        let ret = cvt(unsafe {
            libc::read(self.fd,
                       buf.as_mut_ptr() as *mut c_void,
                       cmp::min(buf.len(), max_len()))
        })?;
        Ok(ret as usize)
    }

    pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
        let ret = cvt(unsafe {
            libc::readv(self.fd,
                        bufs.as_ptr() as *const libc::iovec,
                        cmp::min(bufs.len(), c_int::max_value() as usize) as c_int)
        })?;
        Ok(ret as usize)
    }

    pub fn read_to_end(&self, buf: &mut Vec<u8>) -> io::Result<usize> {
        let mut me = self;
        (&mut me).read_to_end(buf)
    }

    pub fn read_at(&self, buf: &mut [u8], offset: u64) -> io::Result<usize> {
        #[cfg(target_os = "android")]
        use super::android::cvt_pread64;

        #[cfg(target_os = "emscripten")]
        unsafe fn cvt_pread64(fd: c_int, buf: *mut c_void, count: usize, offset: i64)
            -> io::Result<isize>
        {
            use crate::convert::TryInto;
            use libc::pread64;
            // pread64 on emscripten actually takes a 32 bit offset
            if let Ok(o) = offset.try_into() {
                cvt(pread64(fd, buf, count, o))
            } else {
                Err(io::Error::new(io::ErrorKind::InvalidInput,
                                   "cannot pread >2GB"))
            }
        }

        #[cfg(not(any(target_os = "android", target_os = "emscripten")))]
        unsafe fn cvt_pread64(fd: c_int, buf: *mut c_void, count: usize, offset: i64)
            -> io::Result<isize>
        {
            #[cfg(target_os = "linux")]
            use libc::pread64;
            #[cfg(not(target_os = "linux"))]
            use libc::pread as pread64;
            cvt(pread64(fd, buf, count, offset))
        }

        unsafe {
            cvt_pread64(self.fd,
                        buf.as_mut_ptr() as *mut c_void,
                        cmp::min(buf.len(), max_len()),
                        offset as i64)
                .map(|n| n as usize)
        }
    }

    pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
        let ret = cvt(unsafe {
            libc::write(self.fd,
                        buf.as_ptr() as *const c_void,
                        cmp::min(buf.len(), max_len()))
        })?;
        Ok(ret as usize)
    }

    pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        let ret = cvt(unsafe {
            libc::writev(self.fd,
                         bufs.as_ptr() as *const libc::iovec,
                         cmp::min(bufs.len(), c_int::max_value() as usize) as c_int)
        })?;
        Ok(ret as usize)
    }

    pub fn write_at(&self, buf: &[u8], offset: u64) -> io::Result<usize> {
        #[cfg(target_os = "android")]
        use super::android::cvt_pwrite64;

        #[cfg(target_os = "emscripten")]
        unsafe fn cvt_pwrite64(fd: c_int, buf: *const c_void, count: usize, offset: i64)
            -> io::Result<isize>
        {
            use crate::convert::TryInto;
            use libc::pwrite64;
            // pwrite64 on emscripten actually takes a 32 bit offset
            if let Ok(o) = offset.try_into() {
                cvt(pwrite64(fd, buf, count, o))
            } else {
                Err(io::Error::new(io::ErrorKind::InvalidInput,
                                   "cannot pwrite >2GB"))
            }
        }

        #[cfg(not(any(target_os = "android", target_os = "emscripten")))]
        unsafe fn cvt_pwrite64(fd: c_int, buf: *const c_void, count: usize, offset: i64)
            -> io::Result<isize>
        {
            #[cfg(target_os = "linux")]
            use libc::pwrite64;
            #[cfg(not(target_os = "linux"))]
            use libc::pwrite as pwrite64;
            cvt(pwrite64(fd, buf, count, offset))
        }

        unsafe {
            cvt_pwrite64(self.fd,
                         buf.as_ptr() as *const c_void,
                         cmp::min(buf.len(), max_len()),
                         offset as i64)
                .map(|n| n as usize)
        }
    }

    #[cfg(target_os = "linux")]
    pub fn get_cloexec(&self) -> io::Result<bool> {
        unsafe {
            Ok((cvt(libc::fcntl(self.fd, libc::F_GETFD))? & libc::FD_CLOEXEC) != 0)
        }
    }

    #[cfg(not(any(target_env = "newlib",
                  target_os = "solaris",
                  target_os = "emscripten",
                  target_os = "fuchsia",
                  target_os = "l4re",
                  target_os = "haiku")))]
    pub fn set_cloexec(&self) -> io::Result<()> {
        unsafe {
            cvt(libc::ioctl(self.fd, libc::FIOCLEX))?;
            Ok(())
        }
    }
    #[cfg(any(target_env = "newlib",
              target_os = "solaris",
              target_os = "emscripten",
              target_os = "fuchsia",
              target_os = "l4re",
              target_os = "haiku"))]
    pub fn set_cloexec(&self) -> io::Result<()> {
        unsafe {
            let previous = cvt(libc::fcntl(self.fd, libc::F_GETFD))?;
            let new = previous | libc::FD_CLOEXEC;
            if new != previous {
                cvt(libc::fcntl(self.fd, libc::F_SETFD, new))?;
            }
            Ok(())
        }
    }

    #[cfg(target_os = "linux")]
    pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
        unsafe {
            let v = nonblocking as c_int;
            cvt(libc::ioctl(self.fd, libc::FIONBIO, &v))?;
            Ok(())
        }
    }

    #[cfg(not(target_os = "linux"))]
    pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
        unsafe {
            let previous = cvt(libc::fcntl(self.fd, libc::F_GETFL))?;
            let new = if nonblocking {
                previous | libc::O_NONBLOCK
            } else {
                previous & !libc::O_NONBLOCK
            };
            if new != previous {
                cvt(libc::fcntl(self.fd, libc::F_SETFL, new))?;
            }
            Ok(())
        }
    }

    pub fn duplicate(&self) -> io::Result<FileDesc> {
        // We want to atomically duplicate this file descriptor and set the
        // CLOEXEC flag, and currently that's done via F_DUPFD_CLOEXEC. This
        // flag, however, isn't supported on older Linux kernels (earlier than
        // 2.6.24).
        //
        // To detect this and ensure that CLOEXEC is still set, we
        // follow a strategy similar to musl [1] where if passing
        // F_DUPFD_CLOEXEC causes `fcntl` to return EINVAL it means it's not
        // supported (the third parameter, 0, is always valid), so we stop
        // trying that.
        //
        // Also note that Android doesn't have F_DUPFD_CLOEXEC, but get it to
        // resolve so we at least compile this.
        //
        // [1]: http://comments.gmane.org/gmane.linux.lib.musl.general/2963
        #[cfg(any(target_os = "android", target_os = "haiku"))]
        use libc::F_DUPFD as F_DUPFD_CLOEXEC;
        #[cfg(not(any(target_os = "android", target_os="haiku")))]
        use libc::F_DUPFD_CLOEXEC;

        let make_filedesc = |fd| {
            let fd = FileDesc::new(fd);
            fd.set_cloexec()?;
            Ok(fd)
        };
        static TRY_CLOEXEC: AtomicBool =
            AtomicBool::new(!cfg!(target_os = "android"));
        let fd = self.raw();
        if TRY_CLOEXEC.load(Ordering::Relaxed) {
            match cvt(unsafe { libc::fcntl(fd, F_DUPFD_CLOEXEC, 0) }) {
                // We *still* call the `set_cloexec` method as apparently some
                // linux kernel at some point stopped setting CLOEXEC even
                // though it reported doing so on F_DUPFD_CLOEXEC.
                Ok(fd) => {
                    return Ok(if cfg!(target_os = "linux") {
                        make_filedesc(fd)?
                    } else {
                        FileDesc::new(fd)
                    })
                }
                Err(ref e) if e.raw_os_error() == Some(libc::EINVAL) => {
                    TRY_CLOEXEC.store(false, Ordering::Relaxed);
                }
                Err(e) => return Err(e),
            }
        }
        cvt(unsafe { libc::fcntl(fd, libc::F_DUPFD, 0) }).and_then(make_filedesc)
    }
}

impl<'a> Read for &'a FileDesc {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        (**self).read(buf)
    }

    #[inline]
    unsafe fn initializer(&self) -> Initializer {
        Initializer::nop()
    }
}

impl AsInner<c_int> for FileDesc {
    fn as_inner(&self) -> &c_int { &self.fd }
}

impl Drop for FileDesc {
    fn drop(&mut self) {
        // Note that errors are ignored when closing a file descriptor. The
        // reason for this is that if an error occurs we don't actually know if
        // the file descriptor was closed or not, and if we retried (for
        // something like EINTR), we might close another valid file descriptor
        // opened after we closed ours.
        let _ = unsafe { libc::close(self.fd) };
    }
}